Mukul Chandra Bora, Lecturer (Selection Grade), Department of Civil Engineering, Dibrugarh Polytechnic, Lahowal, Assam

Introduction

With the exponential growth in number of automobiles in India during recent years, the demand of tyres as original equipment and as replacement has also increased. The quantity of scrap tyres produced in India is not exactly available but the increasing trend of use of road transportation will definitely create a problem of disposal in very near future. The total number of registered buses, trucks, cars/jeeps/taxis and two wheelers up to 1997 in India were 0.5 million, 2.25 million, 4.7 million and 26 million, respectively. An annual cumulative growth rate of 8% is expected (Automan, 1999, Statistical Yearbook, 2000). Considering the average life of the tyres used in these vehicles as 10 years after rethreading twice, the total number of waste disposable tyres will be in the order of 112 million per year. Some of the current uses for used tyres in India include tyre rethreading applications, tyre derived fuel for making bricks, making belts for running shafts and making gaskets. This consumes only a fraction of the total tyres discarded every year. The previous common practice of use as fuel is now prohibited by the Indian Government as it causes serious environmental degradation.

The major significance of this research work is to ascertain the replacement of the natural stone aggregate as good quality conventional natural resources like sand, gravel, aggregates etc are depleting very fast with the increase in construction activities in the country and a ban on new quarries are inevitable due to environmental problem. As such, there is a growing search for alternative materials. Keeping in view of the aforesaid reason, a comprehensive experimental investigation was carried out to study the properties of fresh rubberised concrete which in turn provide a useful guideline for its use in concrete.

Experimental Programme

Materials

Cement

Ordinary Portland Cement (53 Grade) conforming to IS: 12269 – 1987 was used in this investigation. The specific gravity and specific surface of the cement was found out to be 3.15 and 3350gm2/gm respectively. The normal consistency of the cement as determined by Vicat Apparatus was found to be 29%.

Sand

Fine grained sand of Dihing River near Dibrugarh was used in this investigation. The sand used was medium sand with fineness modulus as determined was 2.35 and specific gravity is equal to 2.62.

Coarse Aggregate

Table 1. Properties of Natural Aggregate
Name of the Properties Value
Classification (USCS) SP
Flakiness Index (%) 1.5
Elongation Index (%) 2.75
Crushing Value (%) 5.0
Crushed stone aggregate of sizes fro 16mm – 20mm collected from Namrup was used in this investigation. Its different properties as determined in the laboratory were tabulated in Table 1.

Water

Water used for making the concrete was treated water of potable standard which is available in the concrete testing laboratory of Dibrugarh Polytechnic. The water was further tested in the Environmental Engineering Laboratory and found to conform to potable water standard.

Tyre chips

Tyre chips was made by cutting the scrap truck tyres into sizes of 12mm and 16mm and used by mixing them in proportion of 2:3. The cutting of tyre was done by hand by labour with chisels & cutters. The maximum and minimum size of chips was 16mm and 12mm respectively. The specific gravity and water absorption was as determined in the laboratory was 0.96 and 0.45% respectively.

Preparation of Concrete Mixture and Test Procedure

A design mix of M25 grade was used in this experimental investigation. The proportion of the design mix was 1: 0.98:2.1 with water cement ratio of 0.39. The percentage of replacement natural coarse aggregate with tyre chips starts from 10% and ends at 30% in increments of 10%. The tyre chips was prepared by cutting the whole scrap tyre into the sizes ranging from 12mm - 16mm without the use of any equipment or machine. A normal concrete of natural aggregate without any replacement (0%) is used for the purpose of reference. Indian Standard Methods of Sampling and Analysis of Concrete (IS: 1199 – 1959) was used to determine the workability and compaction factor of the fresh concrete. The concrete mix was prepared manually and then poured into the cube mould and compacted with surface vibration. The details of the test series are given in Table 1.

The standard procedure as outlined in Indian Standard Code of practice for slump test was followed in this experimental investigation.

The compacting factor of the fresh concrete was also determined to ascertain the workability of fresh concrete as per IS: 1199 – 1959. The standard apparatus as outlined in I.S code was used is for the determination of Compacting factor of the fresh concrete.

Results and Discussion

Properties of fresh Rubberised Concrete: Based on the test conducted on fresh concrete the workability of the concrete in terms of slump value is tabulated in Table 2. It was observed that the workability of the rubberised concrete increases with the increase in tyre chips content. But the compaction factor slightly decreases with increase in rubber content which is negligible. The increase in the value of slump may be due to the lower water absorption capacity of the tyre chips and slight decrease in compaction factor may be due to the cushioning effect provided by the tyre chips aggregate.

Table 2: Workability of the Concrete in terms of Slump Value
Sl. No Test Series Workability (Slump)
1 Normal Concrete 85 mm
2 Rubberised concrete (10%) 100 mm
3 Rubberised concrete (15%) 125 mm
4 Rubberised concrete (30%) 150 mm

Table 3: Unit weight of rubberised concrete
Type of Concrete Unit Weight (Kg/m3) %  reduction
Normal (1:1.5:3) 2500 0
Rubberised (10% replacement) 2350 6
Rubberised (20% replacement) 2250 10
Rubberised (30% replacement) 2200 12

Table 4: Compressive strength of rubberised concrete
Type of Mix (1:1.5:3, w/c = 0.45) Compressive Strength (MPa)
7days 28days
Normal Concrete 30 35
Rubberised concrete (10% replacement) 27 32
Rubberised concrete (15% replacement) 24 28
Rubberised concrete (30% replacement) 18 22

The compaction factor as determined was found to be in the range of 0.8-0.9 and satisfactory.

Properties of rubberised concrete in hardened state: The properties of concrete prepared with partial replacement of natural aggregate with tyre chips aggregate was tested for its weight and compressive strength and the results obtained are tabulated in Table 3 and 4. The photographic view of the compression testing machine (2500kN) and the tested cube containing tyre chips are shown in Fig.1 and 2.

Compression testing machine   concrete cubes
Figure 1: Compression testing machine (Capacity 2500kN)   Figure 2: Photograph of the concrete cubes containing tyre chips after compression test

Conclusion

Based on the experimental investigations conducted on rubberised concrete and the subsequent results, the following major conclusions can be drawn.
  1. The workability of the rubberised concrete increases with the increase in rubber content. This may be due to the lower water absorption capacity of the tyre chips.
  2. Due to lower water absorption capacity of the tyre chips, the good workability can be achieved with lower water cement ratio and hence may be useful for high performance concrete having low water cement ratio. This property may lead to the reduction in use of plasticizer and super plasticizer in those concrete.
  3. The use of rubberised concrete may be very much beneficial for a country like India where the problem of scrap tyre disposal is at the very initial stage.
  4. The rubberised concrete may be useful for the bases of foundation which in turn reduces the use of natural aggregates and hence mining.
  5. To be used in reinforced cement concrete, it needs further investigations and field tests.
  6. The unit weight of rubberised concrete decreases with the increase in tyre chips content and hence may be suitable for lightweight construction.
  7. The compressive strength of the concrete with tyre chips does not show any remarkable decrease upto 15% replacement of natural aggregate with tyre chips.
  8. It will offer an opportunity for new entrepreneurs to set up industries for production of tyre chips and hence help in saving our environment as well as employment generation.
  9. The cost analysis reveals that rubberised concrete is cheaper than normal concrete as the scrap tyres are available with nominal cost. There is a direct cost reduction of 10% for optimum replacement percentage of tyre chips.
Studies reveal positive results in terms of workability of concrete and hence utilization of these wastes in the construction industry in large quantities seems to be a reasonable solution for environmental and economic problems. Finally, the use of rubber tire waste in composite materials provides an opportunity to recycle these wastes and thus to achieve an environmental goal.

References

  • Eldin, N.N. and A.B. Senouci, 1993. 'Rubber-tire particles as concrete aggregate.' J. Mater. Civil. Eng. ASCE, 5: 478-496.
  • Biel, T.D. and H. Lee, 1994. 'Use of recycled tire rubbers in concrete. Proceedings of ASCE 3rd Material Engineering Conference Infrastructure: New Materials and Methods of Repair,' San Diego, CA pp: 351-358.
  • Schimizze, R., J. Nelson, S. Amirkhanian and J. Murden, 1994. 'Use of waste rubber in light-duty concrete pavements.' Proceedings of ASCE 3rd Material Engineering Conference Infrastructure: New Material and Methods of Repair, San Diego, CA pp: 367-374.
  • Khatib, Z.K. and F.M. Bayomy, 1999. 'Rubberized Portland cement concrete.' J. Mater. Civil. Eng. ASCE, 11: 206-213.
  • Serge, N. and I. Joekes, 2000. 'Use of tire rubber particles as addition to cement paste.' Cem. Concr. Res., 30: 1421-1425.
  • Segre, N., Joekes, I., 2000. 'Use of tire rubber particles as addition to cement paste.' Cement and Concrete Research 30 (9), 1421–1425
  • Hernandez-olivares, F., G. Barluenga, M. Bollati and B. Witoszek, 2002. 'Statics and dynamic behaviuour of recycled tyre rubber-filled concrete.' Cem. Concr. Res., 32: 1587-1596.
  • Hernandez-Olivares, F., Baluenga, G., 2004. 'Fire performance of recycled rubberfilled high-strength concrete.' Cement and Concrete Research 34, 109–117.
  • Siddique, R., Naik, T.R., 2004. 'Properties of concrete containing scrap-tire rubber an overview.' Waste management 24, 563–569.
  • Siddique, R., Khatib, J., Kaur, I., 2008. 'Use of recycled plastic in concrete: A review.' Waste Management 28, 1835–1852.
  • Khaloo, Ali R., Dehestani, M. and Rahmatabadi, P. (2008) “Mechanical properties of concrete containing a high volume of tire–rubber particles” Waste Management 28; 2472–2482
  • IS: 10262 – 1982, Indian Standard Recommended Guidelines for Concrete Mix Design. Bureau of Indian Standards, New Delhi
  • IS: 12269 – 1987, Indian Standard Specification for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi
  • IS: 1199 – 1969 (2004), Indian Standard Methods of Sampling and Analysis of Concrete, Bureau of Indian Standards, New Delhi.
  • IS: 383 – 1970. Indian Standard Specification for Coarse and Fine Aggregate from Natural Sources for Concrete.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...