An Investigation on the Strength Properties of Steel Fibre Reinforced Concrete Produced with Glass Powder as Pozzolana

Dr. K.B. Prakash, Professor, B.R. Patagundi, Asst. Professor, K.L.E.Society’s College of Engineering & Technology, Belgaum.

It has been estimated that several million tones of waste glasses are generated annually worldwide. The key sources of waste glasses are waste containers, window glasses, window screen, medicinal bottles, liquor bottles, tube lights, bulbs, electronic equipment etc. Only a part of this waste glass can be used in recycling. The remaining waste glass cannot be used for any purposes. But recently the research has shown that the waste glass can be effectively used in concrete either as glass aggregate (as fine aggregate or as coarse aggregate) or as a glass pozzolana. The waste glass when grounded to a very fine powder shows some pozzolanic properties. Therefore, the glass powder to some extent replaces the cement and contributes for the strength development. In this experimentation, an attempt has been made to study the characteristic strength properties of steel fibre reinforced concrete produced by replacing the cement by waste glass powder in various percentages like 0%, 10%, 20%, 30%, and 40%.

Introduction

Almost every industry produce waste irrespective of the nature of their products. The effective disposal of these wastes is a challenging task ahead. In olden days, such wastes were used as land fill materials for the low-lying areas. Waste generation and its disposal in landfill sites are unsustainable. The industrial wastes like flyash, silica fume, blast furnace slag etc. and other wastes like solid waste, waste plastics, waste glass, waste tiles and other agricultural wastes are causing the environmental pollution in one or the other way. The efficient safe disposal or efficient recycling is one of the challenging tasks ahead of engineers.

The concrete industry, to some extent is making use of many of these industrial wastes effectively in the production of concrete. For example the use of industrial wastes like flyash, silica fume and blast furnace slag in concrete can act as pozzolana and replace a part of cement. The pozzolanic reaction adds to the strength of concrete and also results in savings of cement. Thus nowadays the cement industries are making use of flyash, silica fume, and blast furnace slag as pozzolanas to replace a part of cement.1

It has been estimated that several million tones of waste glasses are generated annually worldwide2 The key sources of waste glasses are waste glass containers, window glasses, & glass screen, medicinal bottles, liquor bottles, tube lights, bulbs,electronic equipment etc. Only a part of this waste glass can be used in recycling. The remaining waste glass cannot be used for any purposes. But recently the research has shown that the waste glass can be effectively used in concrete either as glass aggregate (as fine aggregate or as coarse aggregate) or as a glass pozzolana.3 The waste glass when grounded to a very fine powder shows some pozzolanic properties. Therefore, the glass powder to some extent can replace the cement and also contribute for the strength development.

Post consumer and other waste glass types are a major component of the solid waste stream in many countries and most is currently landfilled.3 Alternatively, waste glass could be used as a concrete aggregate, either as a direct replacement for normal concrete aggregates (low value) or as an exposed, decorative aggregate in architectural concrete products (highvalue). Expansive alkali silica reactions (ASR) can occur between glass particles and cement paste, particularly in moist conditions and with high alkali cements. This reaction is not confined to glass aggregates but can occur when ever aggregates contain reactive silica. However, it is now fairly well accepted that by controlling the reactive silica, cement alkali level and moisture, the reaction can be reduced or totally mitigated.4,6

Finley ground glass has the appropriate chemical composition to react with alkalis in cement (pozzolanic reaction) and from cementitious products. The pozzolanic properties are likely to be derived from the high SiO2 content of glass. Powdered glass used in combination with Portland cement contributes to strength development.5 Various suppres– sants can minimize ASR of glass aggregate concrete. Pulverised fuel ash (Pfa) and metakaolin (MK) can completely eliminate ASR.2

Experimental Programe

Oxide Content for Waste Glass
In this experimentation, an attempt is made to study the characteristic strength properties of steel fibre reinforced concrete produced by replacing the cement by waste glass powder in various percentages like 0%, 10%, 20%,30%, and 40%.

In the experimentation 43 grade OPC, locally available sand and coarse aggregates were used. The specific gravity of sand was found to be 2.61 and was Zone II sand.The specific gravity of coarse aggregate was found to be 2.92. The coarse aggregate used were of 12mm and down graded size. To impart workability, a super plasticizer Conplast SP 430 was used at the rate of 0.7% by weight of cemntitious materials. The glass powder was obtained by crushing waste glass pieces in a cone crusher mill. The glass powder passing through 600 micron was used for the experimentation. The chemical composition of glass powder is shown in Table 1. The different percentage replacement of cement by waste glass powder used in experimentation were 0%, 10%, 20%, 30%, and 40%.

The mix design was carried out for M20 grade of concrete by IS 10262:19827, which yielded a mix proportion of 1:1.29:3.11 with a water cement ratio of 0.44.

The specimens were prepared according to the mix proportion and by replacing cement by glass powder in different proportion. The entire mix was dry mixed by adding1% steel fibres (by volume fraction) and then water was added (w/c = 0.44) along with super plasticizer at a dosage of 0.7% (by weight of cement). The entire mix was homogeneously mixed and specimens were cast.

Strength Test
To find out the compressive strength, specimens of dimensions 150X150X150mm were cast and Tested under compressive testing machine of capacity 2000 KN as per IS 516:19598. To find out tensile strength, the cylindrical specimens of dimensions 150mm diameter and 300mm length were cast. Split tensile strength was obtained by testing the specimens on CTM of capacity 2000 KN as per IS 5816:19999. To find out the flexural strength, the specimens of dimensions 100mm x 100mm x 500mm were cast. Two point loading was adopted on an effective span of 400mm and tested as per IS 516:19598. For impact strength test, the specimens were of dimension 150 mm dia and 60 mm height. Drop weight test was adopted for testing impact specimen. They were kept in Shrudder’s impact testing machine and the hammer weighing 4.54 kg was dropped from a height of 457 mm. Number of blows required tocause first crack and final crack were noted down. Impact energy is calculated by the following formula.

Impact energy = WhN (N-m)

Where,

W=Weight of ball in N = 45.4N
h=Height of fall in metres = 0.457m
N= Number of blows required to cause first crack or final failure as the case may be.

Strength of SFRC

Test Results

Tables 2, 3, 4, 5 and Fig 1, 2, 3, 4 show respectively the compressive strength, tensile strength, flexural strength and impact strength test results of steel fibre reinforced concrete when the cement is replaced by waste glass powder in different proportions.

Discussions on Test Results

Glass Powder and Cement before mixing

Mixing of Glass Powder and Cement
It has been observed that the higher compressive strength for SFRC can be obtained when 20% cement is replaced by glass powder. The percentage increase in compressive strength for 20% replacement by waste glass powder is found to be 5.77%. It is observed that the compressive strength of SFRCincreases linearly from 0% replacement to 20% replacement of cement by waste glass powder and thereafter it decreases continuously. At 30% and 40% replacement of cement by waste glass powder, it is observed that the compressive strength strikes lower than the reference mix.

Similar trends are observed for tensile strength, flexural strength and impact strength. The percentage increase in tensile strength, flexural strength and impact strength for 20% replacement of cement by waste glass powder are found to be 15.95%, 17.37%, and 51.59% respectively.

This may be due to the fact that 20% replacement of cement by glass powder may give rise to maximum pozzolanic reaction and it may act as strong filler material, thus contributing towards more strength.

Conclusions

The following conclusions may be drawn based on experimental observations.
  • Steel fibre reinforced concrete produced by replacing 20% cement by waste glass powder gives higher compressive strength, tensile strength, flexural strength and impact strength.
  • In general, waste glass powder can be used effectively as pozzolana in steel fibre reinforced concrete tosave the consumption of cement.

Acknowledgment

The authors would like to thank the management authorities of KLES’s College of Engineering and Technology, Belgaum for their kindsupport. The authors also thank Principal Dr. S.C. Pilli and HOD, Civil Engineering Department Dr.V.V.Karajinnifor giving all the encouragement needed which kept the enthusiasmalive.

References

  • Suryawanshi C.S., “Use of industrial and domestic waste in concrete”, Civil Engineering & Construction Review, Feb 1999.
  • Byars E. A, Morales B and Zhu H. Y., “Waste glass as concrete aggregate and pozzolana – laboratory and industrial projects”, Concrete, Vol.38, No.1, January 2004, pp 41-44.
  • Byars E A, Morales B and Zhu H Y, “Conglasscrete I”, www.wrap.org.uk.
  • Baxter S. Jin W and Meyer C, “Glasscrete–concrete with glass aggregate” ACI Materials Journal, Mar -April, 2000, pp 208-213.
  • Albert Tang, Ravindra Dhir, Tom Dyer, and Yongjun, “Towards maximizing the value andsustainable use of glass”,Concrete Journal, Volume 38, January 2004, pp.38-40.
  • Byars E A, Morales B, and Zhu H Y, “Conglasscrete II”, www.wrap.org.uk.
  • IS 10262:1982, “Recommended guidelines of concrete mix design”.
  • IS 516:1959, “Method of tests for strength of concrete”.
  • IS 5816:1999, “Splitting tensile strength of concrete method of test.”
NBM&CW August 2008
Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry

Challenges in usage of Hydrogen in Cement Industry

With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.