Effect of High Temperature on the Addition of Three Industrial Wastes as Pozzolanas and Rubber Latex on the Properties of Concrete

rubber latex modified tertiary blended concrete

Dr. K. B. Prakash, Professor of Civil Engineering, B.S.Krishnamurthy, Professor of Civil Engineering, K.L. Society’s, Gogte Institute of Technology, Belgaum

Extensive research work for decades is in progress throughout the globe in concrete technology in finding alternative materials which can partially or fully replace ordinary Portland cement (OPC) and which can also meet the requirements of strength and durability aspects. Amongst the many alternatives materials tried as partial cement replacement materials, the strength, workability and durability performance of industrial by products like flyash, blast furnace slag, silica fume, metakaoline, rice husk ash, etc., now termed as supplementary cementitious materials (SCM) are quite promising. Subsequently, these have led to the development of binary, ternary and tertiary blended concretes depending on the number of SCM and their combinations used as partial cement replacement materials. Binary blends contain one SCM, ternary blends contain combination of any two SCM and tertiary blends contain combination of any three SCM respectively. In this paper, an experimental investigation is carried out to assess the compressive strength of rubber latex modified tertiary blended concretes subjected to elevated temperatures of 1000C and 2000C for 24 hours duration. From the experimental investigation, it can be concluded that rubber latex modified tertiary blended concretes subjected to 1000C or 2000C with 30% replacement of cement by tertiary blends (FA+SF+BFS) in proportions of (10+10+10) show a better resistance to temperature.

Introduction

Human safety in case of fire is one of the major considerations in the design of buildings. It is extremely necessary to have a complete knowledge about the behavior of all construction materials before using them in the structural elements[1]. Concrete is a non-homogeneous material consisting of hardened cement paste and aggregates. With an increase in temperature, cracking is initiated due to thermal incompatibilities between the aggregates and the hardened cement paste[2].

Developments in 1990s have seen a marked increase in the number of structures involving the first time heating of concrete. These include nuclear reactor pressure vessels, storage tanks for hot crude oil and hot water, coal gasification and liquefaction vessels which are subjected to elevated temperatures of up to 2500C. The extensive use of concrete as a structural material in all the above mentioned structures necessitated the need to study the behavior of concrete at high temperature and its durability for the required needs.[3]

A number of research workers in various countries have investigated the effect of elevated temperature on the residual strength of concrete. In most of these investigations the main variable, as far as heating regime is concerned, has been the maximum level of temperature to which the concrete is subjected, the value generally ranging from 1000C–9000C[3]. Research work has also been carried out to evaluate the performance at elevated temperature on blended cement concretes containing supplementary cementitious materials (SCM) as partial replacement to ordinary Portland cement. These SCM include industrial by products like flyash [4], silica fume [5], ground granulated blast furnace slag [6], metakaoline[7] etc.

Research works have indicated that the fire resistance of concrete is highly dependent on its constituent materials, particularly the pozzolanas. Experimental investigations also indicate that the addition of silica fume highly densifies the pore structure of concrete, which can result in explosive spalling due to the build up of pore pressure by steam. It is also investigated that the addition of flyash or ground granulated blast furnace slag enhances the fire resistance of concrete. It is reported that the compressive strength of flyash concrete retained higher strengths than the pure OPC concrete at higher temperature upto 6500C[1]. Research work has been carried out on three high strength concrete mixes incorporating silica fume, flyash and ground granulated blast furnace slag independently subjecting to a maximum temperature of 9000C and tested under loaded conditions. It is observed that ground granulated blast furnace slag concrete showed the best performance followed by flyash and silica fume concretes. Similarly, research work has also been carried out to evaluate the performance of metakaoline concrete at elevated temperature upto 8000C. The research findings has indicated that after an increase in compressive strength at 2000C, the metakaoline concrete suffered a more severe loss of compressive strength and permeability related durability than the corresponding silica fume, flyash and OPC concretes at higher temperatures.

Research Significance

Not much published research work is available on tertiary blended concretes containing rubber latex and subjected to elevated temperature. Hence this experimental investigation was carried out to investigate the performance of rubber latex modified tertiary blended concretes subjected to elevated temperature of 1000C and 200 C.

Experimental Programme

rubber latex modified tertiary blended concrete
In this paper, an attempt is made to study the effect of elevated temperature on the properties of rubber latex modified tertiary blended concrete. In the experimentation, three supplementary cementitious materials viz. flyash (FA), silica fume (SF) and blast furnace slag (BFS) are used in different proportions to replace the cement. The proportions of (FA+SF+BFS) adopted are (0+0+0), (5+10+15), (10+10+10), (15+5+10), (20+5+5), (25+2.5+2.5), and (30+0+0) respectively. 53 grade OPC was used in the experimentation. Coarse aggregates of 12mm and down size having a specific gravity of 2.95 and locally available sand with a specific gravity of 2.59 and falling in Zone-II were used. To impart workability a sulphonated naphthalene polymer based superplasticizer was used at the rate of 1% by weight of cement and was obtained from Fosroc company. The flyash used in the experimentation was obtained from Thermal Power Plant, Raichur (Karnataka) having chemical composition as shown in Table 1.

rubber latex modified tertiary blended concrete
The silica fume was obtained from Elkem laboratories, Navi Mumbai possessing chemical composition as shown in Table 2. The blast furnace slag was obtained from Steel Authority of India Ltd., Bhadravati (Karnataka) having chemical composition as shown in Table 3. The rubber latex was obtained from Rubber Board, Kottayam (Kerala). It was centrifuged rubber latex with 60% dry rubber content (DRC).

The mix design was carried out for M25 grade concrete as per IS: 10262 -1982[8] which yielded a proportion of 1:1.23:2.41 with a w/ c ratio of 0.45.

The cement, sand and coarse aggregates were weighed according to the proportion of 1:1.23:2.41 and dry mixed. Before mixing, 30% of cement was replaced by (flyash + silica fume + blast furnace slag), according to the proportions such as (0+0+0), (5+10+15), (10+10+10), (15+5+10), (20+5+5), (25+2.5+2.5), and (30+0+0) respectively. The required amount of water was added to this dry mix and intimately mixed. The calculated quantity of superplasticizer was now added and mixed thoroughly. After this, 2% rubber latex (by weight of cement) was added to the mix and the entire concrete was agitated thoroughly to get a homogeneous mix. Then the mix was placed layer by layer in the moulds to cast the specimens. The specimens were prepared both by hand compaction as well by imparting vibrations through vibrating Table. The specimens were finished smooth and kept under wet gunny bags for 24 hours after which they were cured for 28 days. After 28 days curing, the specimens were placed in the heating chambers.

rubber latex modified tertiary blended concrete
For assessing compressive strengths of reference mix and rubber latex modified tertiary blended concretes at elevated temperatures, standard cube specimens of 150 x 150 x 150mm were cast. All the specimens were placed in the heating chambers for 24 hours and subjected to elevated temperatures of 1000C and 2000C respectively. After 24 hours, all the specimens were removed and cooled to room temperature and then tested for the compressive strength as per IS:519-1959[9].

Experimental Results

rubber latex modified tertiary blended concrete
Table 4 and table 5 show the results of the effect of rubber latex modified tertiary blended concretes with different proportions of (FA+SF+BFS) subjected to elevated temperature of 1000C and 2000C respectively. Figure 1 and Figure 2 show the variation of compressive strength in the form of bar graphs.

Observations and Discussions

It is observed that the rubber latex modified tertiary blended concrete with (10+10+10) proportions of (FA+SF+BFS) subjected to elevated temperature of 1000C show a higher compressive strength as compared with reference mix subjected to elevated temperatures of 1000C. The percentage increase the compressive strength as compared to reference mix is about 16.00%.

It is also observed that the rubber latex modified tertiary blended concrete with (10+10+10) proportions of (FA+SF+BFS) and subjected to elevated temperature of 2000C show a higher compressive strength as compared to reference mix subjected to elevated temperatures of 2000C. The percentage increase in the compressive strength as compared to reference mix is about 15.79%.

The increase in the compressive strength may be due to the fact that the rubber latex modified tertiary blended concrete with (10+10+10) proportion of (FA+SF+BFS), changes the morphological structure of concrete which can resist the temperature in a better way. The flyash and blast furnace slag added in concrete may accommodate the pressure created by temperature rise with minute air bubbles and silica fume added imparting the strength.

Effect of Temperature on rubber latex modified tertiary blended concrete

Conclusion

It can be concluded that 30% replacement of cement by (10+10+10) proportions of (FA+SF+BFS) in rubber latex modified tertiary blended concrete subjected to elevated temperature of 1000C or 2000C for 24 hours show a better resistance to temperature as compared to other proportions.

Acknowledgment

The authors would like to express their deep sense of gratitude and sincere thanks to the Board of Management and Principals of both the engineering colleges for all the encouragement and cooperation given in conducting the experimental investigation. The authors also sincerely thank all the research contributors whose research publications have been referred in the preparation of this paper.

References

  • Chi-Sun Poon, Salman Azar, Mike Anson, Yuk-Lung Wong, “Performance of metakaolin concrete at elevated temperature,” Cement & Concrete Composites 25(2003) pp.83-89.
  • Xu Y, Wong Y.L, Poon C.S and Anson M. “Influence of PFA on cracking of concrete and cement paste after exposure to high temperature,” Cement and Concrete Research, 33(2003) pp. 2009-2016.
  • Potha Raju M, Janaki Rao A, “Effect of temperature on residual compressive strength of flyash concrete,” The Indian Concrete Journal, May 2001, pp.347-350.
  • Potha Raju M, Shobha M and Rambabu K. “Flexural strength of flyash concrete under elevated temperature,” Magazine of Concrete Research, 2004, 56. No.2, March, pp.83-88.
  • Saad M, Abo-El-Enein S.A, Hanna G.B and Kotkata M.F. “Effect of Temperature on Physical and Mechanical Properties of Concrete containing Silica Fume,” Cement and Concrete Research, Vol.26, No.5, 1996, pp.669-675.
  • Ramlochan T, Thomas M.D.A and Hooton R.D. “The effect of pozzolans and slag on the expansion of mortars cured at elevated temperatures,” Cement and Concrete Research, 34(2004),pp. 1341-1356.
  • Bai J, Wild S. “Investigation of the temperature change and heat evolution of mortar containing PFA and metakaolin,” Cement and Concrete Composites, 24(2002), pp.201-209.
  • IS:10262-1980: “Recommended guide lines for mix design.”
  • IS:519-1959: “ Method of testing for concrete strength.”
Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Modelling Methods for Protection of RCC Structures
Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Bajaj Reinforcements LLP - Introduces Fibre Tuff heavy-duty synthetic fibres that offer a range of benefits to concrete
Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Use of Headed Bars in Reinforced Concrete Design
Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...