Role of Additives in Optimization of Flyash in Cement

Flyash in Cement

S.K Agarwal and Preeti Sharma, Central Building Research Institute, Roorkee
This paper deals with the effect of various additives in optimizing the flyash content in portland cement. The study showed that with the use of various additives like naphthalene–based superplasticizer, calcium nitrite, calcium formate or blend of these additives. It is possible to load up to 35% of flyash in ordinary Portland cement compared to around 25% of flyash present in Indian portland pozzolana cement. The 35% limit is the upper limit fixed by Indian standard. The 28-day compressive strength of cement with 35% flyash incorporating various additives is comparable to control PPC. Effect of flyash replacement by sand has also been studied.

Introduction

India at present produces about 120 million tons of cement, out of which 30-40 million tons of cement is blended. The major blended cements are predominantly Portland pozzolana PPC (flyash), and Portland slag (PSC). About 30% of flyash is being utilized by various agencies. Thus, there is tremendous pressure for its utilization from environmental angle. The portland pozzolana cement is being sold in the market as 53MPa, composite cement etc. This PPC contains 20-25% flyash. The cement manufacturers are envisaging that by 2010 the share of the blended cements will be about 60% with major share of PPC. It is only possible if more fly ash is loaded in OPC. Keeping this in view, there is scope of loading more flyash in OPC. In India, up to 35% flyash is permitted under BIS 1491-1991.

Many research workers have used additives either as grinding aids for clinker or improving the properties of cement. Effect of additives on individual components of cements have been studied (1-6) extensively to know the hydration behavior.

This paper presents the results of an investigation on the effect of additives in optimizing flyash content in OPC. The compressive strength of cement mortars incorporating two grades (I&II, BIS 3812-2003) of flyash has been chosen for the present study.

Experimental

Flyash in Cement
Materials
53 grade OPC conforming to BIS 12269 and PPC (29% flyash) was used in present study. The physical and chemical properties of OPC and PPC cements are given in Table 1.

Two flyashes one from Dadri and other from Ropar were taken for the present study. The physical and chemical properties of flyash (Dadri and Ropar) are also given in Table 1.

Powdered naphthalene sulfonated formaldehyde condensate, calcium nitrite and calcium formate were procured from the local market.

Method

Stock of Ordinary Portland cement with various percentage of flyash was blended thoroughly using powder mixer.

Casting of 12.5mm cement cubes (OPC) with various percentages of flyash (Ropar and Dadri) were cast with and without additive (SNF) at water content required for the consistency of control cement. The cubes were demolded after 24 hrs. and kept in water at 27 ± 2oC. The compressive strength at 1, 3, 7 and 28 days is given in Table2-3.

The effect on compressive strength by replacing flyash with sand has also been studied and results are given in Table 4.

The casting of 50mm cubes of mortar (1:3) with and without additives (SNF, calcium formate and calcium Nitrate) were cast and cured at 27±2ºC. The compressive strength at 1, 3, 7 and 28 days were obtained. The results are given in Table 5.

Scanning electron micrograph of Dadri and Ropar flyash was determined and shown in figure 1 and 2.

The X ray of both the flyashes was also taken and shown in figure 3 and 4.

The pozzolanic reactivity index of Dadri flyash is 120 and Ropar flyash is 90. The dose of SNF was optimized and found 0.5% by weight of cement in the present study.

Results and Discussion

Effect of additive (SNF) on compressive strength of cement incorporating Ropar flyash:
Table 2 presents the compressive strength data of various percentages of flyash cement with and without additive. The control cement contains 29% flyash, which was supplied by the manufacturer. It is clear from the table that with addition of 0.5% additive (sulfonated formaldehyde condensate powder), up to 35% flyash blended cement, the compressive strength at various ages of 1, 3, 7 and 28 days are comparable to the control cement. However, when fly ash content is increased to 40%, the 3 and 7 day compressive strength is about 25-30% lowers than the control, however at 28 days, it is only 5% lower when compared to control.

Effect of SNF on Compressive Strength of Cement Incorporating Dadri Flyash:

Flyash in Cement
Table 3 presents data of compressive strength with and without additive of cement with various percentages of Dadri flyash. It is evident from table 3 that with the use of 0.5% of SNF, it is possible to increase the flyash content up to 35% in OPC. The compressive strength of cement with Dadri flyash at various ages has been found to be more than cement with Ropar flyash. This is because of higher surface area and pozzolanic activity of Dadri flyash than the Ropar flyash.

Effect of Sand Replacement

In order to find out the contribution of flyash in the strength development of cement, flyash was replaced by sand in the 35% mix. In case of Ropar flyash at 28 days, the compressive strength of cement without additive, there is drop of 54% and 49% with additive. In case of Dadri flyash also the drop in compressive strength is similar. It can be concluded from the observation that the contribution of flyash in strength development is 54 and 49%.

Effect of SNF on Mortar

Table 5 represents the data of 1:3 mortars. The compressive strength of control system with 29% flyash has been compared with mortar with 35% flyash cement and with 0.5% additive. It is clear from the table that compressive strength at 1, 3, 7 and at 28 days it is about 5% more up to 33% flyash cement and it is at par with control up to 35%. When calcium formate and calcium nitrite is added along with SNF the 1-day strength has been found to be 50 and 30% more than control. However, at 28 days, it is similar to control system.

The addition of superplasticizer in cement disperses the cement particles and allows the glassy content of the fly ash to react effectively with the lime liberated by the hydration of the cement to form CSH.

The increase in flyash content from 29% to 35% in a cement plant of 5000 tons capacity per day, extra 462 tons flyash can be loaded. It has been estimated that including the cost of superplasticizer (0.5%), it is possible to save around $2100 per day. It is not only the saving in terms of cost but from environmental point of view.

Conclusion

  1. It is clear from the present studies that with the addition of powdered SNF. It is possible to increase the flyash content up to 35% in OPC.
  2. The addition of flyash has no negative effect on the compressive strength of cement up to 35%.
  3. The study will help to utilize more flyash in OPC, thereby helping to save limestone used in the manufacture of clinker and hence environmental pollution caused due to CO2in the clinker production.
Flyash in Cement

Acknowledgment

The authors are thankful to Director, Central Building Research Institute, Roorkee for pursuing the work in the lab. The paper is being published with the permission of Director, CBRI, Roorkee.
NBM&CW March 2009

No comments yet, Be the first one to comment on this.

Durability and Sustainability of Hardened Concrete

Durability and Sustainability of Hardened Concrete

Concrete is widely used in construction, yet its longevity and sustainability often go unnoticed until signs of premature deterioration appear. To truly understand how to extend its service life, it is crucial to explore the factors

Read more ...

Role of Chemical Admixtures in Enhancing Construction Durability

Role of Chemical Admixtures in Enhancing Construction Durability

“In modern construction, the integration of chemical admixtures is not just an enhancement—it's a necessity. By improving durability, performance, and sustainability, these innovations are shaping the future of infrastructure.

Read more ...

ICrete by Amazecrete: A Game-changer Concrete Additive

ICrete by Amazecrete: A Game-changer Concrete Additive

With the introduction of ICrete, we are pushing the boundaries of concrete technology with solutions that address both performance and environmental challenges. Kowshika V R, Executive Director, Amazecrete

Read more ...

Grinding Aids as Energy Saver in Cement Production

Grinding Aids as Energy Saver in Cement Production

The benefits of using different grinding aids in cement production are improved output, decreased energy consumption, cost reduction, and minimizing the carbon footprint- all of which are steps forward in bringing greater sustainability

Read more ...

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

The recent acquisition of BuildTech by Thermax exemplifies a significant trend within the industry towards strategic expansion and enhanced capabilities in construction technologies.

Read more ...

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete has emerged as a new age material for Concrete Construction given its efficacy in increasing the strength and durability of concrete, bringing value additions and greater profitability to the users.

Read more ...

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

The Cement Industry is embarking on a Net Zero pathway, aiming for a 25% reduction in CO2 emissions by 2030 and a full decarbonization by 2050, driven by technological innovations, use of alternative raw materials, and circular economy

Read more ...

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Plastic hinges form at the maximum moment region of reinforced concrete columns. A reasonable estimation of the plastic hinge length is key to successfully modeling the lateral load-drift response and conducting a proper seismic

Read more ...

Properties and Applications of Geopolymer Masonry Blocks

Properties and Applications of Geopolymer Masonry Blocks

Radhakrishna, Professor and Head, Department of Civil Engineering, RV College of Engineering, Affiliated to Visvesvaraya Technological University, Bengaluru. Block masonry is one of the oldest methods of construction. It is composed

Read more ...

Advancing LC3 Cement Technology for Sustainable Construction in India

Advancing LC3 Cement Technology for Sustainable Construction in India

Dr S B Hegde provides a deep, research-driven analysis of LC3 cement, emphasizing its chemistry, process innovations, global applicability, and success stories, and evaluates its technical advantages, performance, cost savings

Read more ...

Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.