Sudisht Mishra, Faculty Civil Engineer. Deptt NERIST, Itanagar, Prof (Dr.) S. V. Deodhar, Principal, SSVPS BSD College of Engineering, Dhule.

Introduction

Effect of Rice Husk Ash on Cement Mortar and Concrete
Workability, strength, and durability are three basics properties of concrete. Amount of useful internal work necessary to overcome the internal friction to produce full compaction is termed as Workability. Size, shape, surface texture and grading of aggregates, water-cement ratio, use of admixtures and mix proportion are important factors affecting workability. Strength is to bear the desired stresses within the permissible factor of safety in expected exposure condition. The factor influencing the strength are: quality of cement, water-cement ratio, grading of aggregates, degree of compaction, efficiency of curing, curing temperature, age at the time of testing, impact and fatigue. Durability is sustenance of shape, size and strength; resistance to exposure conditions, disintegration and wearing under adverse conditions. Variation in concrete production, loading conditions in service life and subsequent attack by the environment factors are main deteriorating factor of concrete. Properly compacted and cured concrete used in RCC continues to be substantially water tight and durable till capillary pores and micro-cracks in the interior are interconnected to form pathways up to surface.

Durability is mainly influenced by environmental exposure condition, freezing - thawing, contact to aggressive chemicals, type and quality of constituent materials, water-cement ratio, workability, shape and size of the member, degree of compaction, efficiency of curing, effectiveness of cover concrete, porosity and permeability. During service life of structures, penetration of water and aggressive chemicals, carbonation, chloride ingress, leaching, sulphate attack, alkali-silica reaction and freezing-thawing are resulting deterioration. Loading and weathering inter link voids and micro-cracks present in transition zone and network of same micro cracks gets connected to cracks on concrete surface which provides primary mechanism of the fluid transport to interior of concrete. Subsequent increase of penetrability leads to easy ingress of water, oxygen, carbon dioxide and acidic ions etc into concrete resulting cracking, spalling, loss at mass, strength and stiffness.

Low permeability is key to durability and it is controlled by factors like water-cement ratio, degree of hydration, curing, entrapped air voids, micro cracks due to loading and cyclic exposure to thermal variations. Admixture improves workability, compactibility, strength, impermeability, resistance to chemical attack, corrosion of reinforcement and freezing - thawing etc. and in turn to durability. For this study durability is interpreted in terms of porosity, moisture movement, surface strength, ultra sound pulse velocity and elasticity modulus of concrete. Optimum use of Rice Husk Ash (RHA), obtained by open field burning method, is decided for improving workability, strength and durability of concrete.

Rice Husk Ash

RHA, produced after burning of Rice husks (RH) has high reactivity and pozzolanic property. Indian Standard code of practice for plain and reinforced concrete, IS 456- 2000, recommends use of RHA in concrete but does not specify quantities. Chemical compositions of RHA are affected due to burning process and temperature. Silica content in the ash increases with higher the burning temperature. As per study by Houston, D. F. (1972) RHA produced by burning rice husk between 600 and 700°C temperatures for 2 hours, contains 90-95% SiO2, 1-3% K2O and < 5% unburnt carbon. Under controlled burning condition in industrial furnace, conducted by Mehta, P. K. (1992), RHA contains silica in amorphous and highly cellular form, with 50-1000 m2/g surface area. So use of RHA with cement improves workability and stability, reduces heat evolution, thermal cracking and plastic shrinkage. This increases strength development, impermeability and durability by strengthening transition zone, modifying the pore-structure, blocking the large voids in the hydrated cement paste through pozzolanic reaction. RHA minimizes alkali-aggregate reaction, reduces expansion, refines pore structure and hinders diffusion of alkali ions to the surface of aggregate by micro porous structure.

Portland cement contains 60 to 65% CaO and, upon hydration, a considerable portion of lime is released as free Ca(OH)2, which is primarily responsible for the poor performance of Portland cement concretes in acidic environments. Silica present in the RHA combines with the calcium hydroxide and results excellent resistance of the material to acidic environments. RHA replacing 10% Portland cement resists chloride penetration, improves capillary suction and accelerated chloride diffusivity.

Pozzolanic reaction of RHA consumes Ca(OH)2 present in a hydrated Portland cement paste, reduces susceptible to acid attack and improves resistance to chloride penetration. This reduces large pores and porosity resulting very low permeability. The pozzolanic and cementitious reaction associated with RHA reduces the free lime present in the cement paste, decreases the permeability of the system, improves overall resistance to CO2 attack and enhances resistance to corrosion of steel in concrete. Highly micro porous structure RHA mixed concrete provides escape paths for the freezing water inside the concrete, relieving internal stresses, reducing micro cracking and improving freeze-thaw resistance.

Non Destructive Tests (NDT)

NDT, systems required for assessing strength in service feature, is defined as a test which does not impair the intended performance of the element or member under investigation, carried out onsite, with ability to determine the strength and durability of critical constructions without damaging.

For conducting ND Tests, Rebound hammer, Protimeter-moisture measurement system, Porositester and pulse Ultrasonic Non-Destructive Indicating Tester (PUNDIT) equipment are used.

Rebound hammer test is conducted to asses the relative strength of concrete based on the hardness at or near its exposed surface. Concrete Rebound Test Hammer is a traditional instrument used for the non-destructive testing of hardened concrete. This provides a quick and simple test method for obtaining an immediate indication of concrete strength in various parts of a structure. Knob of this instrument is kept perpendicular to the surface (i.e. 90 degree to the surface) for measurement and is push pressed from the bottom towards the surface of the concrete, hammer like sound is produced. The button near the bottom of the instrument is pressed to lock the indicator and reading is taken.

The surface moisture is generally not seen for cleaning and restoring the structure after damage from storms, floods or fires. For exposed or unseen structural damage, the undetected moisture damages strength, durability and reliability. The Protimeter Moisture Measurement System is a powerful and versatile instrument for measuring and diagnosing surface moisture in buildings. This instrument directly displays moisture content (%) along with three conditions of material like DRY, WET and RISK condition. For using Protimeter operational modes are selected and information is presented on a large, back lit liquid crystal display. The radio frequency sensor is positioned so that large number of moisture readings is taken quickly and easily.

Porositester contains of 3 glass tube used to measure the water penetration in concrete at atmospheric pressure. Tubes are fixed with vacuum plate and vacuum pump without any subsequent cleaning. Rubber seal inserted in the tube provides a defined contact surface of dia 25 mm vertical or horizontal. Compressible seals on suction plate and tube permit secure fixing also to uneven surfaces. Current supply is provided from a 12 V rechargeable battery. Vacuum plate is pressed against the façade with a wet sponge, motor is placed on adhesion of the plate is checked. Test tubes are placed under the clip and secured firmly with screws. Test tubes are filled with water up to the zero mark and again refilled after the descent of the water level by 1 or 2 ml and readings of quantity of penetrated water are noted down for 15 minute test time. As per the manual of equipment, water absorption coefficient A is calculated by using following formula:

Effect of Rice Husk Ash on Cement Mortar and Concrete

Where,

X=Amount (level) of water penetrated in ml.

d= Dia. of test tube in mm.

t= Time of penetration in minutes.

Effect of Rice Husk Ash on Cement Mortar and Concrete
Figure 1: Porositester
Figure 1 shows the Porositester mentioned above Pundit is a highly trustworthy equipment for ultrasonic pulse velocity teshon concrete. Pundit plus is used to determine pulse velocity, (UPV) modulus of elasticity, cavities and cracks present in the concrete. Equipment is ruggedly built for on-site reliability for simple, speedy operation with integral RS232 interface, auto memory store for readings, large LCD display with external or battery power supply. The setup parameters are defined for the preferred mode of operation and respective values are displayed.

Workplan

Objective of this work is to study the effects of Rice Husk Ash as an admixture on workability, strength, durability of cement concrete and cement mortar. Based on the above, optimum dose of RHA is determined to enhance the desired properties of concrete without causing any adverse result on other properties.

Rice Husk from local Rice Mills was burnt completely in open field condition and sieved with 150 micron IS sieve. Rice Husk Ash percentage was gradual increased from 7.5%, 10.0%, 12.5%, 15.0% and 17.5%. M20 grade nominal mix concrete (1 : 1.5 : 3) and cement mortar of proportion (1 : 4). Coarse aggregate of 20 mm graded nominal size, river sand zone III type and 53 grades Pozzolana Portland Cement (PPC) were used for this work. For slump values 15 mm to 35 mm and compaction factor 0.85 to 0.90, water cement ratio for plain and RHA mixed concrete was 0.50 and 0.575 respectively. For casting concrete and mortar cubes, 150 mm steel cube moulds and 70.7 mm steel cube moulds were used. Each set Contained Six samples of plain concrete and six of RHA mixed. After 24 hours of casting, samples were opened and kept under tap water curing for 28 days. Later destructive and non-destructive tests were carried out on set of three separate cubes and average values taken for this study.

Test Results
Compressive Strength

Compressive strength for RHA mixed concrete samples increased upto 12.5% of RHA and decreased for higher % of RHA. Highest strength was found 30.3 N/mm2 followed by 30.07 N/mm2 for RHA composition 10.00% and 12.5% respectively. In comparison to normal M20 mix samples, compressive strength decreased by 12.94% and 19.17% for 15.00% and 17.5% of RHA mixed concrete samples. Between RHA compositions 10% and 12.5%, compressive strength increased very marginally (0.80%) whereas same value was highest (3.08%) between RHA compositions 7.50% and 10.00%.

Compressive strength of normal mortar cubes was 10.39 N/mm2 and same increased to 16.43 N/mm2 and 17.44 N/mm2 for RHA composition 7.5% and 10.00% respectively. For higher proportion of RHA, 12.50%, 15.00% and 17.50%, compressive strength decreased to 12.74 N/mm2, 10.73 N/mm2 and 7.71 N/mm2 respectively. Maximum increase in strength was 67.85% followed by 58.13% for 10.00% and 7.50% RHA composition respectively.

Effect of Rice Husk Ash on Cement Mortar and Concrete

Rebound Hammer Test

Surface strength of M20 grade concrete cube was 20.05 N/mm2. For RHA mixed samples, same values increased to a maximum of 28.00 N/mm2 and minimum 23.00 N/mm2 (Table-1) for 10% and 17.5 % rice husk respectively. For RHA mixed mortar samples, surface strength increased marginally from 16.67 N/mm2 to 17.33 N/mm2 (3.96%) which further showed a decreased value of 16.67 N/mm2 for mortar cubes with 17.5% RHA. For concrete samples, strength increased upto 10% RHA and later it started decreasing but for the mortar samples same trend continued upto 15% RHA. Interpreted from the graph that the strength is increased rapidly from 7.5% to 15% and it starts decreasing with increase in percentage of admixture. The reference mortar cube is having strength of N/mm2.

Effect of Rice Husk Ash on Cement Mortar and Concrete

Surface Moisture Test Results

Surface moisture for concrete cubes was 17.31% which increased to 17.97% for 7.5% RHA content. For higher % of RHA, it showed a decreased trend with minimum value 17.2% for 17.5% RHA. For RHA mixed mortar cubes, maximum value was 17.32% with 10% RHA which further decreased to 15.89% for 17.5% RHA.

Effect of Rice Husk Ash on Cement Mortar and Concrete
Figure 2 (a): Variation of NDT Properties of Mortar Cubes

Pulse Velocity Test

Pulse velocity was observed 3258 m/sec. in normal concrete cubes which increased to maximum 3736 m/sec. in 15.00% RHA mixed cubes. Increase in pulse velocity was 6.78%, 10.25%, 12.68%,14.67% and 13.51% for corresponding RHA 7.5%, 10%, 12.5%, 15%, and 17.5% respectively.

Elastic modulus increased from 3.83 GN/m2 to a maximum 5.97 GN/m2 (55.87%) for 12.5% RHA mixed samples.

Effect of Rice Husk Ash on Cement Mortar and Concrete
Figure 2 (b): Variation in Compressive Strength, Rebound Hammer
Strength and Surface Moisture

Porosity

For nominal mix M20 grade concrete cubes, water absorption coefficient was found 1.19 Kg/m2 /” min. In RHA mixed concrete samples, water absorption coefficients exhibited decreasing trend to a minimum of 1.34 (29.84%) for 12.5% of RHA but the same increased with higher percentage of RHA. For maximum proportion of RHA (17.5%) it was found 1.63 Kg/m2 /” min, 15.18% higher than the minimum value.

Effect of Rice Husk Ash on Cement Mortar and Concrete
Figure 2 (c): Variation in Compressive Strength, Rebound Hammer
Strength and Surface Moisture

Conclusion

In nominal mix M20 grade concrete and 1:4 cement mortar RHA was added as an admixture from 7.50% to 17.50% with an uniform variation of 2.5%. During destructive test, compressive strength of mortar cubes and rebound hammer strength of concrete samples found increased with maximum variation of 67.85% and 39.65% for 10% RHA. Maximum variations of elastic modulus were 55.87% followed by 27.94% for 12.50% and 10% RHA mixed samples. Compressive strength of concrete samples showed maximum increase 3.08% between RHA 7.50% to 10.00% which decreased further for higher percentage of RHA.

Reduction in water absorption, from results obtained from 6 tests concrete and 3 tests on mortar samples, it is observed that up to 10% RHA with concrete and mortar enhances all properties (Figures 2a to c) and it is observed that 12.5% of Rice Husk Ash by mass of cement as the optimum doses to be added in concrete production of M20 particularly when the husk is burnt under field condition to utilize the easily available and low cost resources for betterment of concrete structure with respect to economy, durability and strength. So best applicable percentage of rice husk ash as per field condition 10.00% for optimal strength and durability.

References

  • Bronzeoak Ltd, Rice Husk Ash Market Study, ETSU U/00/00061/REP DTI/Pub URN 03/668, 2003.
  • Satish Chandra, Waste materials used in concrete manufacturing, William Andrew Inc. Norwich, NY 13815, 2002.
  • Hwang, C. L., and Wu, D. S., Properties of Cement Paste Containing Rice Husk Ash, ACI SP-114, 1989.
  • Anderson,L.L. and Tillman D.A., Fuels from waste. Academic Press Inc., New York, U.S.A, 1978.
  • E. B. Oyetola and M. Abdullahi, The Use of Rice Husk Ash in Low–Cost Sandcrete Block Production, Department of Civil Engineering, Federal University of Technology, P.M.B. 65, Minna, Nigeria, June 2006.
IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Modelling Methods for Protection of RCC Structures
Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Bajaj Reinforcements LLP - Introduces Fibre Tuff heavy-duty synthetic fibres that offer a range of benefits to concrete
Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...