Sakshi Gupta, Assistant Professor, Civil Engineering, ASET, Amity University, Gurgaon.

This paper presents a review of bacterial concrete, its merits and applications relating to the strength and durability of concrete. Cracks in concrete reduce the durability of structures and for repairing those cracks the use of conventional sealing agents has found to be environmentally unsafe and costly. The solution for this comes in the form of bacterial concrete.It is a concrete which can be made by embedding bacteria thus utilizing microbiologically induced calcite (CaCO3) precipitation. Based on various studies, bacteria have found to be beneficial in enhancing the durability and strength of concrete. This technique has been found to improve the properties of concrete.

Introduction

Concrete is one of the most widely used construction materials in the world [1]. Concrete technology is a flourishing field in which the researches are still going in discretion for the sustainability and durability of concrete. Recently, bacterial or microbial concrete has been introduced to the concrete industry to enhance the performance of concrete

Bacterial concrete is a type of sustainable, eco-friendly material that enhances concrete performance by the microbial deposition of calcium carbonate within concrete pores through molecular reactions reducing fissures and cracks [2]. The ability of the bacteria to produce minerals such as carbonates has been put to various uses in civil engineering.

Crack formation in concrete is a phenomenon that can hardly be completely avoided due to various phenomenon and stresses occurring in set structures. While larger cracks can potentially hamper a structures' integrity and thus require repair actions, smaller cracks typically with a crack width smaller than 0.2 mm are generally considered uncomplicated. Such micro cracks do not affect strength properties of the structures but contribute to porosity and permeability of the material. Ingress of the aggressive chemicals such as chlorides, sulfates and acids may result in long-term concrete matrix degradation and premature corrosion of the embedded steel reinforcement, hampering the structures' durability.

In several studies, it has been found that concrete structures have a certain capacity for self-governing healing of the micro cracks [10]. The actual capacity of micro crack healing appears primarily related to the composition of the concrete mixtures; particularly mixtures based on a high binder content show remarkable crack-healing properties which is due to delayed (secondary) hydration of matrix embedded non-hydrated cement and binder particles upon reaction with crack ingress water. Autogenous self-healing of cracks in traditional but also high-binder content mixtures appear limited to cracks with a width smaller than 0.2 mm which is largely due to the restricted expansive potential of the small non-hydrated cement particles lying exposed at the crack surface. Another limitation to application of high binder content mixtures solely for the purpose of increasing self-healing capacities are current policies which advocate sparse use of cement in concrete for sustainability reasons as current cement production contributes about 7% to global anthropogenic CO2 emissions. For latter reasons, alternative and more sustainable self-healing mechanisms are therefore wanted.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

FAIRMATE manufactures a complete range of construction chemicals and provides cost-effective solutions and world-class services to the Speciality Construction Chemicals Industry in alliance with leading

Read more ...

Corrosion of concrete is a major issue and many concrete structures on adverse environment have experienced unacceptable losses in terms of serviceability, ultimately requiring replacement

Read more ...

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability

Read more ...

Cement concrete is the most consumed materials on the earth next only to water. The ingredients used in preparing concrete are not sustainable. The ingredients are responsible for causing global warming. The most

Read more ...

India’s ready-mix concrete (RMC) market is projected to witness a 7-9% CAGR in the next five years. This growth is predominantly driven by the increased investments in the development of infrastructure throughout

Read more ...

Concrete, being a physical mixture of cement, aggregate (sand and crushed rocks), and water, is the key construction material across the world. There is now a huge demand for infrastructure which has increased concrete

Read more ...

There is a need for technologically advanced concrete admixtures for the ready-mix industry that meet industry codes and meet or exceed the demands of challenging construction applications and adverse placement conditions

Read more ...

High Performance Concrete (HPC) is seeing major applications in the field of civil engineering constructions such as long-span bridges, tunnels, high-rise buildings, huge complexes, highway pavements, and more, since

Read more ...

Concrete being the second largest consumed material after water needs attention towards sustainable construction with an increase in infrastructure. The world is moving towards innovative techniques and methodologies

Read more ...

Co-processing of waste in the cement industry is an advanced and innovative recovery process whereby energy is recovered, and the non-combustible part of the waste is reused as raw material.

Read more ...

Traditional masonry units are not sustainable and eco friendly due to consumption of fuel or cement. It is essential to find sustainable alternatives. This paper reports about preparation of geopolymer bricks, masonry

Read more ...

Geo-polymer mortar (GPM) is proven for its strength, durability and sustainability [2 & 3]; strength of GPM is a function of alkaline to binder ratio, and has an adverse effect on consistence properties of mortar

Read more ...

Comparison of Reinforced and Pre-Stressed Concrete Building Frames This article discusses pre-stressing of concrete to get lighter and slender beam sections for six different four storied concrete building frames of different spans/lengths by the application of post-tensioning

Read more ...

Ready mix concrete (RMC) is the first choice for projects requiring concrete. The term ‘ready mix’ is used to describe a process where concrete is pre-made at a plant and delivered in batches to job sites. It is a convenient

Read more ...

When we talk of Primers that are applied before the paint work, what comes to mind are the Acrylic Primers. However, since the last few years, White Cement-based Primers are gaining popularity amongst the construction

Read more ...

Chemistry is truly relevant for concrete because chemistry controls the life/durability of concrete. It explains why cement hardens and the interaction between cement and its environment. Dr. S.B.Hegde at Udaipur Cement Works

Read more ...

Concrete is considered the world’s most versatile, durable and reliable construction material, next only to water. It is the most consumed material requiring large quantity of cement, fine aggregates, course aggregates

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.