Durability of recycled aggregate concrete with supplementary cementitious materials as evaluated by alternate wetting and drying test

Manjunath M, Research scholar, Walchand College of Engineering, Sangli, and Prakash K B, Principal, Government Engineering College, Haveri

This paper presents an experimental investigation on the effect of alternate wetting and drying on recycled aggregate concrete with different supplementary cementitious materials (SCM). The supplementary cementitious materials considered in the present study include fly ash, silica fume and ground granulated blast furnace slag used as a partial replacement of cement. The compressive strength of concrete subjected to 45 cycles of alternate wetting and drying is determined for the various%age replacements of natural coarse aggregates by recycled aggregates.Test results indicate that the durability aspects of recycled aggregate concrete as evaluated by alternate wetting and drying test can be improved through the use of SCM admixtures.

Introduction

The utilization of the recycled aggregates created from processing construction and demolition waste in new construction has become more important over the last two decades. There are many factors contributing to this, from the non-availability of new material and the damage caused by the quarrying of natural aggregate and the increased disposal costs of waste materials. Construction and demolition waste are generated mainly from demolished concrete and masonry structures. Due to advances in manufacturing of crushing machinery and recycling processes, it became possible to scale or crush down large masses of construction and demolition waste into smaller particles to produce recycled aggregate at acceptable cost.

Recycling of concrete waste is necessary from the viewpoint of environmental preservation and effective utilisation of resources. The utilization of recycled concrete aggregates is particularly very promising as 60-80% of concrete is made of aggregates [3].

A review of several early studies indicated that, compared with concrete mixtures containing natural aggregate, the mixture containing recycled-concrete aggregate generally gave at least two-thirds of the compressive strength and modulus of elasticity, and show satisfactory workability and durability [5]. In general, the effects of using recycled-concrete aggregate instead of natural aggregate are (a) reduced compressive strength (b) reduced modulus of elasticity (c) increased drying shrinkage and creep and (d) increased damping capacity. The reduction in strength ranges between 12 to 25%, while, the reduction in modulus of elasticity varies from 10 to 33%. Creep of recycled aggregate concrete is found to be 30 to 60% greater and drying shrinkage 20 to 50% greater than concrete made with natural aggregates [7 & 1].

Recycled aggregates are composed of the original aggregates and the adhered mortar. It is well known that physical properties of recycled aggregates are very much dependent on the type and quality of the adhered mortar. The adhered mortar is a porous material; its porosity depends upon the water-cement ratio of the recycled concrete employed [4].

As the adhered mortar is often prone to attract more water than the original aggregate, the absorption capacity of recycled aggregates is known to be greater than that of natural aggregate; this is believed to be one of the most significant factors affecting the recycled aggregate concrete. Although there is no clear-cut relation between the strength of concrete and the water absorption of aggregate used, the pores at the surface of the particle affect the bond between the aggregate and the cement paste, and may thus exert some influence on the strength of concrete [6].

When the aggregate to be used is limiting the strength of concrete, the overall performance is usually affected; in this case, the obvious solution is to improve the performance of the aggregate and other concrete components. The factors that contribute to increased strength and performance include use of supplementary cementitious materials and chemical admixtures [2].

Durability of concrete is defined as its ability to resist weathering action, chemical attack, abrasion, or any other process of deterioration. Water, which is the primary agent of both creation and destruction of many natural materials, happens to be central to most durability problems in concrete. In porous solids, water is known to be the cause of many types of physical processes of degradation. The movement of the various fluids through concrete takes place not only by flow through the porous system but also by diffusion and sorption [5].

An exposure condition which cannot be avoided, is the exposure of mature concrete to alternating wetting and drying – a temperature cycle frequently met with in nature. Alternating wetting and drying represents much more severe conditions because a build-up of salts within the concrete can occur in consequence of the ingress of water, followed by evaporation of pure water, with the salts left behind [6].

For concrete produced with recycled aggregates, the volume of pore space in concrete, as distinct from the ease with which a fluid can penetrate it, is measured by absorption, thus testing of concrete subjected to alternating wetting and drying cycles serves as a measure of durability index.

Main objective of this experimentation is to study the effect of alternate wetting and drying on concrete produced by replacing natural coarse aggregates by recycled aggregates and on recycled aggregate concrete with different supplementary cementitious materials. The grade of concrete adopted is M20, as it is the widely used structural concrete. Three supplementary cementitious materials (SCM) considered for the study are fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF). Each of the mineral admixture is used independently in the recycled aggregate concrete. The different%age replacement of natural coarse aggregates by recycled aggregates considered are 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The compressive strength of concrete subjected to 45 cycles of alternate wetting and drying is determined.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
NBM&CW October 2015
Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.