Dr. B. M. Suman, Principal Technical officer, CSIR- Central Building Research Institute, Roorkee

Experimental investigation has been carried out to study thermal performance of various admixtures and their mixed concretes with different ratio and density. There are nine admixtures mixed with concrete for studying their thermal performance. Some of them are Fly ash, Perlite Powder, EPS beads etc. The study of sixteen mixed concretes were carried out and compared with thermal performance of cement concrete. Heat gain were computed for 11.5 cm thick roofing sheets made up of all the mix concretes and cement concrete. According to this study thermal performance of EPS concrete with 30% EPS beads found to be better than all other concretes. The AAC performance was next to EPS concrete followed by the performance of perlite mix concrete with 50% expanded perlite. The other good performer is the vermiculate concrete reducing 41.5% heat gain when compared to cement concrete. It is also found from the study that the mixed concrete with lower overall thermal transmittance allows minimum heat flow across it.

Introduction

Number of thermal insulation materials with fine particles is available to mix with concrete to improve thermal behaviour of mixed concrete. The admixtures are mixed in different ratio with concrete to enhance their thermal characteristics for energy efficiency points of view. Heat gain principle through building fabrics depends upon temperature difference between outside and inside of a building. High temperature difference allows higher heat flow into the building. Heat flow always takes place from high temperature to low temperature. In this process temperature difference is not the only criteria of heat flow but solar radiation, absorptivity and emissivity, external heat transfer coefficient are also influencing the heat ingress into the building. By combining these parameters and outdoor air temperature a new parameter known as sol air temperature which is responsible for heat flow into the building. The conduction heat transfer through structure is of great importance in civil engineering problems. Such problems include, energy efficient building design, thermal load of structures due to diurnal variations of temperature, planning and design of building for thermal comfort, design of radiation shield and other exposed structures for solar thermal loading etc. The knowledge of thermal conductivity and other thermal transport properties of construction material involved in the process of heat transfer are essential in predicting the temperature profile and heat flow through the material. Most of the commercial and residential buildings are now air condition building. Therefore consumption of power and electricity is increasing exponentially. One of the ways of achieving energy conservation in building construction is by introduction of thermally insulated admixture with concrete for building application. Number of concrete manufactures supply such mixes concrete but no one provide relevant data on thermal behaviour of their products. Therefore an experimental investigation was undertaken to understand the influence of various admixtures on density and thermal performance of mix concretes. Number of studies [1, 2] has been made to know the effect of ceiling insulation on the electricity consumption and creating conducive indoor thermal environment. Some of the studies carried out [3, 4] in South Africa revealed that insulated houses are not only warmer in winter but also cooler in summer months. Density of building material plays a key role in determining thermal performance of building section because a masonry building material with low density has decreased thermal conductivity. The derived thermal properties like overall thermal transmittance and subsequently heat gain through the material depend upon its thermal conductivity. Heat gain [5] through roofing sheet will be lower, if thermal conductivity of the material used in roofing sheet is also lower. The mix concrete [6] of low thermal conductivity is useful for building insulation. Bouguerra [7] et. al reported that thermal conductivity of light weight concrete changes considerably with its porosity and density. Roof is the main contributor of heat gain into the building. Sustainable building design [8-10] with mixed cement concrete prepared by mixing admixture with thermal insulation property can be developed. Foam concrete, Vermiculite concrete, Perlite concrete and EPS concrete are some example of such materials. Sol air temperature (Tsol) is the main factor, responsible to heat flow from outside to inside of a building which includes the effect of outdoor air temperature and solar radiation of the place, surface properties like reflectivity, emissivity, and absorptivity of building section. In the present study, sol air temperature will remain same for all cases of study for determining heat gain into the building.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Modelling Methods for Protection of RCC Structures
Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Bajaj Reinforcements LLP - Introduces Fibre Tuff heavy-duty synthetic fibres that offer a range of benefits to concrete
Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Use of Headed Bars in Reinforced Concrete Design
Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...

Innovation easy, effective and economical tool for asset creation
Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Reactivity of Alite and Belite towards Sustainability of Concrete
Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Innovative, Economic, Durable and Sustainable Concrete to last for +100 years of service life
Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

Nanospan India Pvt Ltd
The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc: Building, Cementing & Supporting
Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Dextra Group
Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Ferrochrome Ash Based Geopolymer Concrete
Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.
Click here to subscribe.
×