Properties of Fibre Reinforced Concrete Using Recycled Aggregates and Flyash

Rattandeep Singh, M.Tech (St.), Deepak Gupta, M. Tech (St.) Asso. Professor, Punjab Agricultural University, Ludhiana. (Pb)

Introduction

Concrete is the basic engineering material used in most of the civil engineering structures, it is the premier construction material used widely across the world in most types of engineering works. According to research, concrete stands second to water on volume consumption basis Concrete is a composite material made up of cement, fine aggregates, coarse aggregates and water mixed in desired proportion based on strength requirement. Concrete solidifies and hardens after mixing with water and placement due to a chemical process known as hydration. The water reacts with the cement, which binds the other components together, eventually creating a robust stone-like material. Concrete is used more than any other man-made material in the world. Concrete like other engineering materials needs to be designed for properties like strength, durability and workability. Concrete mix design is the science of deciding relative proportions of ingredients of concrete, to achieve the desired properties of concrete. Use of mineral admixtures like fly ash, slag, metakaolin and steel fibre have revolutionized the concrete technology by increasing its strength and durability of by many folds. The concrete in which steel reinforcement bars, plates or fibres have been incorporated to strengthen a material is called reinforced concrete.

Now a days, construction and demolition industry is one of the country’s largest waste producers. The waste produced by demolition can be minimized and could be utilized again. Concrete recycling is an increasingly common method of disposing of dismantled concrete structures which was once routinely shipped to landfills for disposal. But recycling is now increasing due to improved environmental awareness, government laws and economic benefits. In India, about 14.5 MT of solid wastes are generated annually from construction industries, which include waste sand, gravel, bitumen concrete bricks, masonry, & concrete. However, some quantity of such waste material is being recycled and utilized in building materials. Most of the waste materials produced by demolished structures disposed off by dumping them in land fill. Dumping of wastes on land is causing shortage of dumping place in urban areas. Therefore, it is necessary to start recycling and re-use of demolition concrete waste to save environment. Concrete recycling gains importance because it protects natural resources and eliminates the need for disposal by using the readily available concrete as an aggregate source for new concrete or other applications. Large-scale recycling of demolished concrete will help conserve natural resources, and solve a growing waste-disposal crisis. The future for recycled aggregates will be driven by reduced landfill availability, greater product acceptance, continuing government recycling mandates, and the continuing decay of a large stock of existing infrastructure, as well as by the demands of a healthy economy.

The term "fly ash" is often used to describe any fine paniculate material precipitated from the stack gases of industrial furnaces burning solid fuels like coal. The characteristics and properties of different fly ashes depend on the nature of the fuel and the size of furnace used. Fine grade fly ash has acquired considerable importance in the building materials sector. Disposal of fly ash not only causes air and ground water pollution but also requires huge land area. It is estimated that 72 to 75 thermal power stations across country are presently producing more than 90 Million Tonne of fly ash per annum. For disposal of 400 to 500 MT of ash generation about 100 to 125 acres of waste land is required to dump fly ash. But now a days fly ash can be utilized in many ways in civil engineering works and it can save up to 15 to 25 % of construction cost.

Fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It also increases speed of construction and in some cases may even eliminate the need for conventional reinforcement. It contains short discrete fibres that are uniformly distributed and randomly oriented. Fibres include steel fibres, glass fibres, synthetic fibres and natural fibres. Within these different fibres that character of fibre-reinforced concrete changes with varying concretes, fibre materials, geometries, distribution, orientation and densities. Fibre-reinforced normal concrete are mostly used for on-ground floors and pavements, but can be considered for a wide range of construction parts. Fibres are usually used in concrete to control cracking due to both plastic shrinkage and drying shrinkage. They also reduce the permeability of concrete and thus reduce bleeding of water. Some types of fibres produce greater impact, abrasion and shatter resistance in concrete. Steel is the strongest commonly-available fibre, and come in different lengths and shapes. Steel fibres can only be used on surfaces that can tolerate or avoid corrosion and rust stains.

It is expected that this study involving combination of waste materials i.e. recycled course aggregates with full replacement of fresh course aggregates and fly ash with partially replacement of cement and also addition of steel fibre to concrete, will be useful to the existing construction methodology.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
NBM&CW October 2012
Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry

Challenges in usage of Hydrogen in Cement Industry

With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.