Rattandeep Singh, M.Tech (St.), Deepak Gupta, M. Tech (St.) Asso. Professor, Punjab Agricultural University, Ludhiana. (Pb)

Introduction

Concrete is the basic engineering material used in most of the civil engineering structures, it is the premier construction material used widely across the world in most types of engineering works. According to research, concrete stands second to water on volume consumption basis Concrete is a composite material made up of cement, fine aggregates, coarse aggregates and water mixed in desired proportion based on strength requirement. Concrete solidifies and hardens after mixing with water and placement due to a chemical process known as hydration. The water reacts with the cement, which binds the other components together, eventually creating a robust stone-like material. Concrete is used more than any other man-made material in the world. Concrete like other engineering materials needs to be designed for properties like strength, durability and workability. Concrete mix design is the science of deciding relative proportions of ingredients of concrete, to achieve the desired properties of concrete. Use of mineral admixtures like fly ash, slag, metakaolin and steel fibre have revolutionized the concrete technology by increasing its strength and durability of by many folds. The concrete in which steel reinforcement bars, plates or fibres have been incorporated to strengthen a material is called reinforced concrete.

Now a days, construction and demolition industry is one of the country’s largest waste producers. The waste produced by demolition can be minimized and could be utilized again. Concrete recycling is an increasingly common method of disposing of dismantled concrete structures which was once routinely shipped to landfills for disposal. But recycling is now increasing due to improved environmental awareness, government laws and economic benefits. In India, about 14.5 MT of solid wastes are generated annually from construction industries, which include waste sand, gravel, bitumen concrete bricks, masonry, & concrete. However, some quantity of such waste material is being recycled and utilized in building materials. Most of the waste materials produced by demolished structures disposed off by dumping them in land fill. Dumping of wastes on land is causing shortage of dumping place in urban areas. Therefore, it is necessary to start recycling and re-use of demolition concrete waste to save environment. Concrete recycling gains importance because it protects natural resources and eliminates the need for disposal by using the readily available concrete as an aggregate source for new concrete or other applications. Large-scale recycling of demolished concrete will help conserve natural resources, and solve a growing waste-disposal crisis. The future for recycled aggregates will be driven by reduced landfill availability, greater product acceptance, continuing government recycling mandates, and the continuing decay of a large stock of existing infrastructure, as well as by the demands of a healthy economy.

The term "fly ash" is often used to describe any fine paniculate material precipitated from the stack gases of industrial furnaces burning solid fuels like coal. The characteristics and properties of different fly ashes depend on the nature of the fuel and the size of furnace used. Fine grade fly ash has acquired considerable importance in the building materials sector. Disposal of fly ash not only causes air and ground water pollution but also requires huge land area. It is estimated that 72 to 75 thermal power stations across country are presently producing more than 90 Million Tonne of fly ash per annum. For disposal of 400 to 500 MT of ash generation about 100 to 125 acres of waste land is required to dump fly ash. But now a days fly ash can be utilized in many ways in civil engineering works and it can save up to 15 to 25 % of construction cost.

Fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It also increases speed of construction and in some cases may even eliminate the need for conventional reinforcement. It contains short discrete fibres that are uniformly distributed and randomly oriented. Fibres include steel fibres, glass fibres, synthetic fibres and natural fibres. Within these different fibres that character of fibre-reinforced concrete changes with varying concretes, fibre materials, geometries, distribution, orientation and densities. Fibre-reinforced normal concrete are mostly used for on-ground floors and pavements, but can be considered for a wide range of construction parts. Fibres are usually used in concrete to control cracking due to both plastic shrinkage and drying shrinkage. They also reduce the permeability of concrete and thus reduce bleeding of water. Some types of fibres produce greater impact, abrasion and shatter resistance in concrete. Steel is the strongest commonly-available fibre, and come in different lengths and shapes. Steel fibres can only be used on surfaces that can tolerate or avoid corrosion and rust stains.

It is expected that this study involving combination of waste materials i.e. recycled course aggregates with full replacement of fresh course aggregates and fly ash with partially replacement of cement and also addition of steel fibre to concrete, will be useful to the existing construction methodology.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...