Study of Bond Strength of Concrete Using Recycled Aggregates

Paratibha Aggarwal, Associate Professor, Babita Saini, Assistant Professor, Sarvesh Tripathi, M.Tech student, Deptt. of Civil Engg., N.I.T. Kurukshetra

Introduction

Concrete has been the leading building material since it was first used and is bound to maintain its significant role in the upcoming future due to its durability, maintenance free service life, adaptability to any shape and size, wide range of structural properties plus cost effectiveness. The concrete is the most important construction material which is manufactured at the site. It is the composite product obtained by mixing cement, water and an inert matrix of sand and gravel or crushed stone. It undergoes a number of operations such as transportation, placing, compaction and curing. The distinguishing property of concrete is the ability to harden under water. The ingredients can be classified into two groups namely active and inactive. The active group consists of cement and water, whereas the inactive group consists of fine and coarse aggregates. The inactive group is sometimes also called inert matrix. Concrete has high compressive strength but its tensile strength is very low. In situations where tensile stresses are developed the concrete is strengthened by using steel bars or short randomly distributed fibres forming a composite material called reinforced cement concrete (RCC) or fibre reinforced concrete. The resistance of concrete to the slipping of reinforcing bars embedded in concrete is called bond strength. The bond strength is provided by adhesion of hardened cement paste and by the friction between concrete and reinforcement. It is also affected by the shrinkage of concrete relative to steel. On an average bond strength is taken approximately as 10% of the compressive strength. The roughness of the steel surface, water, the chemical composition of cement and steel bar diameter are the factors that affect the bond strength of concrete. In pull-out tests on plain bars, the maximum load generally represents the bond strength that can be developed between the concrete and steel. With plain bars the maximum load is not very different from the load at the first visible slip, but in the case of the deformed bar, the maximum load may correspond to a large slip which may not in fact be obtained in practice before other types of failure occur. The load shall be applied to the reinforcing bar at a rate not greater than 2250 kg/mm, or at no-load speed of the testing machine head of not greater than 1.25 mm/min, depending on the type of testing machine used and the means provided for ascertaining or controlling speeds. The maximum load for each type of failure shall be recorded. The new replaces the old and same follows with the buildings. Older buildings require reconstruction for better and higher economic gains and on account of obsolescence on structural or functional grounds and also due to the damages inflicted on them by natural disasters and wars. The rate of demolition showed an upward trend which in turn increased the dumping costs due to unavailability of appropriate sites nearby. Thus efficient use of the demolished concrete would reduce the costs and definitely lead to conservation of the invaluable non-renewable sources of energy and hence must be given due importance. The demolished concrete could be used as aggregate for concrete resulting in large consumption of the material. Recycling is the act of processing the used material for use in creating new product. The usage of natural aggregate is getting more intense with the development in infrastructure area. In order to reduce the usage of natural aggregate, recycled aggregate can be used as the replacement materials. Recycled aggregate are comprised crushed, graded inorganic particles obtained from the materials that have been used in the constructions and demolition debris. These materials are generally from buildings, roads, bridges, and sometimes even from catastrophes, such as wars and earthquakes.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
NBM&CW October 2012
Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry

Challenges in usage of Hydrogen in Cement Industry

With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.