Vinayak R.Supekar, Student, PGP-ACM. Civil (C&M), NICMAR, GOA
Popat D.Kumbhar, Associate Professor, Department of Civil Engineering
Rajarambapu Institute of Technology, Rajaramnagar, Sakharale.

Introduction

Concrete is the most widely used material of construction all over the world. A huge quantity of concrete is consumed by global construction industry. In India, the conventional concrete is mostly produced by using natural sand obtained from the riverbeds as fine aggregate. The advantage of natural sand is that the particles are cubical or rounded with smooth surface texture. The grading of natural sand is always not ideal. It depends upon place to place. Being cubical, rounded and smooth textured, it gives good workability. One of the important ingredients of conventional concrete is natural sand or river sand. However, due to the increased use of concrete in almost all types of construction works, the demand of natural or river sand has been increased. The infrastructure development such as express highway projects, power projects and industrial developments have started in a big way now. Available natural sand is getting depleted and also it is becoming costly [1]. Thus, to meet these increased demands of construction industry, excessive quarrying of sand from river beds is taking place causing the shortage of natural sand. This scarcity of natural sand due to such heavy demands in growing construction activities have forced engineers to find a suitable substitute. One of the cheapest and the easiest ways of getting substitute for natural sand is by crushing natural stone to get artificial sand of desired size and grade [2]. The use of artificial sand will conserve the natural resources for sustainable development of the concrete in construction industry [3].

Artificial sand is a process controlled crushed fine aggregate produced from quarried stone by crushing or grinding and classification to obtain a controlled gradation product that completely passes the 4.75mm sieve. Artificial sand generally contain more angular particles with rough surface textures and flatter face than natural sand that are more rounded as a result of weathering. Over the time some investigations have shown that angular particles, rough surface of artificial sand influences the workability and finish ability in fresh concrete. The artificial sand have to satisfy the technical requisites such as workability, strength and durability of concrete and hence it has become necessary to study these properties in order to check the suitability and appropriate replacement level of artificial sand in comparison with the natural sand for producing concretes in an economical way [4, 5].

In the present study, an attempt has been made to experimentally study the strength of concrete cubes and cracking patterns of concrete slab panels by replacing the natural sand with artificial sand at various replacement levels of 20%, 40%, 60% and 100%. The results have shown that the natural sand can be replaced with the artificial sand upto a maximum replacement level of 60% in order to produce concrete of satisfactory strength. The results have also indicated that concrete slab panels showed minimum area of cracks on its surfaces thus improving the durability property.

Experimental Work

Materials Used
The properties of various materials used in making the concrete (M20) are discussed in the following sections.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Modelling Methods for Protection of RCC Structures
Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Bajaj Reinforcements LLP - Introduces Fibre Tuff heavy-duty synthetic fibres that offer a range of benefits to concrete
Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...