Joint Sealanta
Deepak Kanitkar
DGM – Technology & Business Development
Chembond Chemicals Limited, Mumbai.
One of the most essential materials for making the Building Envelope waterproof is the joint sealant. Joints are there invariably in all civil constructions. According to material of construction, there are different kinds of joints. Some are only for joining, some are for accommodating the movements. Movements are mainly because of thermal gradients caused by temperature variations. There are also movements due to seismic activity, settlement, shrinkage, creep and dynamic loads, temperature variations due to processes etc.

All joints which are formed due to above reasons must be properly sealed, monitored and maintained. This is essential to protect the structures from ingress of foreign matter such as dirt, dust, water, chemicals and organisms. Depending on the requirement of each joint there are various types of sealing solution available in the market.

Here we will discuss some very commonly used joint sealants in civil construction. There are mainly two types Viz. Liquid applied and Pre-Formed. Varieties of polymers are used to manufacture liquid applied joint sealants. These include Polysulfide, Polyurethane, modified Polyurethanes, Silyl Terminated Polyether's, SPURs, Polymer modified Bitumen, Flexible Epoxy, Silicones and butyl rubber based materials are now being used.

Joints in Concrete

There are different types of joints in concrete. As there is always a shrinkage involved while using Cement Concrete, this factor must be considered while concrete placement. Concrete cannot poured in thick sections or longer spans, for two reasons. First reason is the heat generated in the concrete due to hydration of cement, which causes differential thermal gradient between the core and the surface. As the mass increases this gradient also increases. As per standard practices, this gradient shall be as close as or less than 20°C. This limits the placement volume. Other reason is that, most of the times continuous pours are not possible or placement may get interrupted due to unavoidable delays. Apart from this, longer and wider sections may crack due to drying, chemical, autogenous shrinkage, creep or thermal expansion and contractions. Expansion Joints, Control or Contraction Joints, Isolation Joints and Detailing joints are some of the type of joints in buildings.

Expansion Joints are provided to allow movement in a structure caused by thermal or other factors such as wind loading.

Control joints are provided for expected cracking due to factors such as settlement, drying shrinkage or separation in building materials after construction. Internal control joints are typically nonmoving while in the exterior they also accommodate movement. External Control joints require more design work.

Isolation joints are placed at junctures where changes in material require isolation for any differential movement between two different materials. Typical example is window frame perimeter abutting façade materials.

Detailing joints are designed as a part of waterproofing system. They are vital to impart water tightness at structure details such as pipe penetrations and changes in planes prior to application of primary waterproofing compounds.

There are some thumb or basic rules for design of joints which are:
  1. Joint size no smaller than 6 mm.
  2. Generally limit the joint size in buildings to 25 mm
  3. Joint opening shall be kept at a minimum of four times anticipated movement.
Sealant design shall take following rules in consideration while deciding width and depth.
  1. Minimum material thickness shall be 6 mm.
  2. Up to 12mm wide joints shall have Depth (D) = Width (W)
  3. Wider joints and traffic joints shall have D = W/2.
  4. Three-way adhesions is not allowed so use of backer Rod or Bond breaker tape is a must.
  5. While using PE closed foam backer rod, it shall be 25% more in diameter than the joint size.
  6. Porous surfaces generally require primer to avoid passage of air/impurities to sealant in wet stage and for proper adhesion.
In liquid applied sealants, there are mainly two types, viz. single component and two components. PU based sealants such as KEM JOINT PU 100 work on a principle of curing by reaction with atmospheric moisture. Polysulfide based sealants such as KEM Joint GG and KEM Joint PG, have two component system. These cure because of chemical reaction between the hardener and base components.

Following illustrations provide an insight into application and mixing methods.

Joint Sealanta Joint Sealanta
Use of Bond breaker tapes to avoid three way adhesion of Sealant A section of joint showing sealant placed over a PE closed cell foam backer Rod.
Joint Sealanta Joint Sealanta
Taping of Joint with masking tape to ensure Neatness Sealant Gun for application of Gun Grade sealant
Joint Sealanta Joint Sealanta
Filling of 2 part sealant in application Gun using follower plate
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...