Integral Watertight Concrete Structures- An Insight

Upen Patel, Marketing Manager, BASF Construction Chemicals (India) Pvt. Ltd. Mumbai

Preface

Since the Stone Age mankind has struggled to keep the structures watertight, Even today’s struggle is on to deploy one or other kind of waterproofing system to achieve total water tightness of structures. In spite of good construction practices at site and using branded products, engineers struggle to keep structures watertight. So far the approach has been based on achieving watertight tanking around the structure to guard entry of water in the structure; less attention and focus has been on getting integral water tightness (within the structure). This article explains the main sources of leakages in the structure, and using two technological advancements to enable integral water tightness to structure with a live case study.

Sources of Leakage

There are three main sources of water leakage in concrete structures:
  • Construction Joints
  • Cracks
  • Porous media

Construction Joints

Large structures of concrete are cast in number of sections. The dividing lines between two sections are the joints between already harden concrete and freshly poured concrete, with continuity of reinforcements. At these joints fresh concrete shrinks and creates a fine crack. These cracks are normally 0.1 – 0. 3 mm in width and are passages for water to pass through the structure.

Cracks

Integral Watertight Concrete Structures- An Insight
Due to various reasons such as excessive segregation of concrete mix, high water cement ratios, movements, settlements, rapid variations in ambient temperatures, early de-stripping, etc… concrete structures develop cracks during the construction stage and these cracks are some time deeper and can easily transport water from one side to another.

Porous Concrete Media

Concrete has heterogeneous matrix, a mixture of binding paste and fillers. While mixing the ingredients and placement of fresh concrete, concrete entraps air and the same is attempted to remove by compaction using mechanical means. Achieving uniform compacting throughout the volume of freshly placed concrete is very difficult to achieve. In adequate compaction results in to the air voids. Theoretically, concrete requires only 23 – 25% water by weight of cement for the chemical hydration of the cement. While actual concrete in practice contains 40 – 50% of water by the weight of cement. The extra water is provided to achieve desired workability and easy of placement. This extra water leaves the concrete mass during the hydration reaction resulting in to the formation of pores. An interconnected series of such pores are popularly known as capillary pores. These capillaries make concrete porous. Besides these two features concrete also contains hydration pores which are formed due to volume changes of hydration products and are normally filled with loose lime, one of end product of the hydration reaction. These hydration pores promotes diffusion of corrosive agents in the concrete.

Integral Watertight Concrete Structures- An Insight

The Integral Watertight Solution

To check the porosity of concrete and leakages through the joints & cracks, integral watertight concept is gaining popularity. The concept is a combination of two systems:
  • Watertight joints using reinjectable hoses
  • Watertight concrete mass by deploying self–compacting concrete concept

Re-injectable Hoses

Integral Watertight Concrete Structures- An Insight
The re-injectable hoses are made up of PVC plastic core which enables toughness to the hose. The core has injection channel in the centre, which connects to openings at regular distance in all four directions. The openings are guarded with neoprene seals.
Integral Watertight Concrete Structures- An Insight
The hose is placed at the central line of the construction joints using clips and the ends are connected to nonperforated hose with termination in near-surface mounted junction boxes. After the casting and destripping of the concrete cover of the junction box is located and marked for future operations. Each length of the hose is first injected with water to assess the leakages at the construction joint. Then injected using water–based lowviscosity, re-swellable, vinylacrylate injection resin. The injection resin pressurized the soft neoprene seals and squeeze out around seals to the openings and travels around the hose and to the crack of the construction joints and other cracks which connects to the construction joints. In the next stage of operation, injection pressure is release and the hose is applied with the vacuum. The neoprene seals now gains original size and seals the openings and prevents the suction of resin from outside of the hose to inside. Also all the resin from the central channel is sucked out and then the hose is rinse using water under low pressure re-circulation stage. Now the resin in the cracks has set and forms an effective seal for passage of water in the future. The hose can be injected with water to verify the effectiveness of the injection. If leakages are noticed then the hose is re-injected with the resin once again. Overall the re-swellable acrylate resin and injection hose provides following main benefits:
  • Re-injectable hose – permanent access to the construction joint
  • In-build QA system–Test the effectiveness by injecting with water
  • Re-swelling injection resin– swells up to 2.5 time in volume to maintain tight seal even in the case of movements in the cracks

Watertight Self– compacting Concrete

To obtain proper, robust self– compacting concrete, it is important to include all of following components in the mix. These components enhance the performance of the fresh concrete as mentioned below:
  • Hyperplasticiser–which is based on PCE polymer and have 30 – 40% water reduction capabilities
  • Viscosity Modifying Agent – Improve the shear resistance and thickens the paste to achieve effective segregation resistance
  • Pozzolans – Facilitate increase in the paste volume without increasing the temperature of concrete and enables segregation resistance.
Integral Watertight Concrete Structures- An Insight
Hence, to achieve a robust mix of self–compacting concrete, it is must that all of these three ingredients are present and are properly included to maximize the benefits they can offer on the hardened properties of the mix.

From the water tightness and durability aspects—these three ingredients enable the following benefits:

Overall by carefully implementing a proper self– compacting mix, achieving watertight concrete mass is possible. Also in the case of large projects, developed mix can be tested for permeability to standards such as DIN 1048 and that can be one of the acceptance criteria. While in the case of smaller projects such special self– compacting mix can be supplied by Ready mix producers who can design and control the ingredients.

Following case history of Hercules Harbor in Monaco enables us an insight in one of such successful implementation of this integral watertight concrete concept.

Case History– Hercules Harbor

Client–Gouvernement of Monaco Location of site–Algeciras Spain Contractor–DRAGADOS BEC V Engineering–DORIS Engineering France R & D–Institute Francais du Petriole Norwegian Technical Institute and many others Technology Supplier–BASF CC Spain (BETTOR MBT)

New studies were made in the 1980‘s to protect and extend the existing harbor. The depth of the sea–bed of 55 meters did not allow conventional construction. Further the Government decided to minimise the impact for the environment during construction. Based upon studies made in France and Norway the Monaco Government decided to build a prefabricated “ semi floating seawal l” a technique common in the offshore oil industry.

Integral Watertight Concrete Structures- An Insight

The structure was 352 metres long, 44 m wide and about 35 m tall; its design required 2,900 MT of steel cables for stressing and 45,000 of concrete!

As the structure cannot be constructed in-situ and also near by area was not available for precasting yard, Engineers from DORIS Engineering decided to construct in a dry-dock, 1200 km away in Spain. As such long structure cannot be transported on the ship; it required to be floated in sea and to be transported by towing. This required total watertightness of the structure and all the joints it has.

Any leakage at joint or within the concrete mass would make it sunk below the ocean.

Based upon the construction of TROLLE, an off shore platform built in Norway, DORIS Engineering recommended the use of Self–compacting Concrete. To secure the construction joints, Masterflex 900, the re-injectable hose was specified allowing testing joints and injecting and re-injecting with resin where necessary.

After the construction all the joints were injected using Masterflex 801, water based reswelling resin and tested for watertightness.

No form of external waterproofing treatment was carried out for this structure. No membrane or no accidental drill and grouting were implemented.

Finally, the structure was towed in the sea as it can be carried on the ship and was positioned at the final location in 2004.

Conclusion

Integral Watertight Concrete Structures- An Insight
The new age technologies and quest of civil engineers have lead to solutions which are long lasting. Such implementations make these technologies time tested and real for the rest of the world to get inspired and to implement.


Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...