Effect of Usage of Admixture in Concrete

Mr. Hasan Rizvi, Asst. General Manager–Business Development, CICO Technologies Limited, New Delhi

Concrete consists of cement, sand, aggregate and water. Anything other than these if added in concrete either before or during mixing to alter the properties to our desired requirement are termed as admixtures. The use of admixtures offers certain beneficial effects to concrete like improved workability, acceleration or retardation of setting time, reduce water cement ratio, and so on.

There are two basic types of admixtures available: chemical & mineral. Admixtures like flyash, silicate fume, slag comes in the category of mineral admixtures. They are added to concrete to enhance the workability, improve resistance to thermal cracking and alkali–aggregate reaction and to enable reduction in cement content.

Flyash is fine residue left after combustion of ground or powdered coal. They are all generally finer than cement and consist mainly of glassy–spherical particles as well as residues of hematite and magnetite, char and some crystalline phases formed during cooling. The use of flyash in concrete makes the mix economical, and improves the workability, reduces segregation, bleeding and reduced heat of hydration but also provides ecological benefits.

Silica fume, which is also known as microsilica. It is obtained as a byproduct during the production of silicon and ferrosilicon alloys. The particle size of silica fume is 100 times smaller than cement particles i.e. its fine as cigarette smoke. Its a highly effective pozzolanic material, which improves the properties of concrete such as improved compressive strength, bond strength, abrasion resistance, dense concrete that results in protection of reinforcement against corrosion.

Chemical admixtures are added to concrete in very small amounts mainly for air entrainment, reduction of water or cement content, plasticizing of fresh concrete mixtures or to control the setting time of concrete. These admixtures can be broadly catagorised as superplasticizers, accelerators, retarders, water reducers and air entraining admixtures.

Superplasticizers are added to reduce the water requirement by 15 to 20% without affecting the workability leading to a high strength and dense concrete. Superplasticizers are liner polymers containing sulfonic acid groups attached to the polymer at regular intervals. The commercial formulation can be sulfonated melamine–formaldehyde conden- sates, sulfonated naphthalene formaldehyde condensates, and modified lignosulfonates, polycar- boxylate derivatives. The main purpose of superplasticizers is to produce a flowing concrete with very high slump 175 to 200 mm which can be used effectively in densely reinforced structures, the increased slump of concrete depends upon dosage, type & time of super– plasticizers (it's better to add it before concrete is placed.), water cement ratio, nature and amount of cement.

Accelerators are added to reduce the setting time of concrete thus helping early removal of forms and are also used in cold weather concreting. Calcium chloride is the most commonly used accelerator for concreting. The use of calcium chloride in reinforced concrete can promote corrosion activity of steel reinforcement. As people are getting aware so there is a growing interest in using chloride free accelerator.

Retarders are added to increase the setting time by slowing down the hydration of cement. They are preferred in places of high temperature concreting. Retarders consist of organic & inorganic agents. Organic retarders include unrefined calcium, sodium & ammonia salts lignosulfonic acids, hydrocarboxylic acids & carbohydrates. Inorganic retardants include oxides of lead, zinc, phosphate and magnesium salts. Most retarders also act as water reducers. They are called water-reducing retarders. Thus resulting in greater compressive strength due to low water cement ratio.

Water reducing admixtures are added to concrete to achieve certain workability (slump) at low water cement ratio. A concrete with specified strength at lower cement content thus saving on the cement. Water reducers are mostly used in hot weather concreting and to aid pumping. Water reducer plasticizers are hygroscopic powder, which can entrain air into concrete.

Air entraining admixtures entrain small air bubbles in concrete. These air bubbles act as rollers thus improving the workability and are also very effective in freeze-thaw cycles as they provide a cushioning effect on the expanding water in the concreting in cold climate.

Air entraining admixtures are compatible with most admixtures, care should be taken to prevent them from coming in contact during mixing.

Generally, the effectiveness of both the types of plasticisers are dependent on the ambient temperature condition and thus in summer the amount of plasticiser to be used to cater for the same degree of increase in plasticity can be more than the quantity to be used in winter.

Change in normal setting time within some fixed requirement also makes the production dependent on others chemicals and as such plasticisers with different nomenclatures are available in the market.

CICO Technologies Limited, an Indian ISO 9001: 2000 Company with 75 years backing produces a range of plasticising admixtures for concrete.

A number of RMC companies are using CICO admixtures. some modifications are required at the time of trials. modification in the Plasticisers can fulfill the requirements of any particular client.

Conclusion

It can be seen that proper use of admixtures offers certain beneficial effects to concrete including improved quality, acceleration or retardation of setting time, enhanced frost & sulphate resistance improves workability.
NBM&CW December 2008
Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.