Stacy Byrd, Technical Services Director & Amit Bartakke, Regional sales Director – India & subcontinents, CETCO

In recent years expensive remedial work to correct failures in below-grade waterproofing systems has motivated owners and designers to seek high-performance and reliable waterproofing solutions to prevent water ingress. In some cases the remedial costs have been many times greater than the initial cost to install the waterproofing; with remedial results not successful at eliminating all of the water leaks.

The construction industry has utilized passive SBS/APP waterproofing membranes for years with general success, but recent failures have led to the development of hybrid membranes that in some cases incorporate active barrier materials for enhanced performance and reliability.

Most of the problems that arise in waterproofing are due to one or more of the following factors:
  1. Choosing inappropriate waterproofing membranes for the wall casting methods
  2. Construction practices and traffic that damage the waterproofing materials after installation
  3. Designs and materials that are inappropriate for the site conditions
  4. Materials that are installed incorrectly
  5. Construction schedules that do not allow for proper sequence and adequate inspection of the work
  6. Value engineering that eliminates components of the waterproofing system or decreases the quality of the waterproofing system
The cost of waterproofing is generally proportional to performance. Waterproofing systems known for high performance generally are priced the highest within the construction industry. Owners and contractors often seek a bargain when comparing waterproofing materials, but they may not understand that different membranes can produce different results and may not even be suitable for their site conditions. For instance, sheet waterproofing membranes can be substantially more expensive than waterproofing admixtures, but the manufacturers for both systems claim similar results – a watertight structure. But the repair required, and cost, if these systems fail will be quite different. Owners and designers must examine the product components and installation techniques of each waterproofing system with regard to performance, applicability with construction methods, and associated warranties in order to come to an informed decision.

For example, waterproofing admixtures, when introduced into concrete mixes, offer some integral waterproofing capabilities. The waterproofing admixtures work within the concrete to prevent transmission of moisture on a microscopic level by affecting concrete pore structure. The issue with admixture waterproofing is that its effectiveness is limited by how well cracking is controlled. Cracking in foundation walls and slabs creates an entry point through which water can easily migrate. Contractors have found it necessary to use remedial polyurethane foam grouts to repair cracks and stop water infiltration through cast-in-place concrete cold joints. Additionally, since the admixture waterproofing material is not a separate barrier material applied to the exterior wall, surface of the foundation the project team must consider what increased level of corrosion is acceptable in the foundation walls knowing that the water is most likely going to penetrate into the structural foundation concrete wall before it can start to be stopped in cracks by the admixture waterproofing.

Waterproofing Selection Factors

Selection of the waterproofing system typically depends on several key factors, such as the foundation construction method (i.e., blind-side or positive-side backfilled walls), environmental conditions, and geotechnical factors such as the potential for hydrostatic pressure. But ultimately the membrane selection may depend on the Owner’s tolerance for risk of water intrusion versus its installed cost.

Voltex / Voltex DS waterproofing
Voltex / Voltex DS waterproofing installed over substrate prior to raft slab placement.

Prior to selecting a membrane, Owners must consider their tolerance for water ingress and the appearance of water-related effects, such as efflorescence and biological growth, in the project’s below-grade spaces. Typically, the usage of the below-ground space determines the level of acceptability of water ingress. For example, the expectation for water-tightness is drastically different for a hospital than it is for a parking garage.

Site Access: Positive-Side vs. Blind-Side

There are two general installation methods for below-grade waterproofing membranes, typically referred to as positive-side and blind-side (aka zero-lot line). Positive-side application of below-grade waterproofing membranes indicates the installer applies the membrane to a concrete wall surface after the forms are removed on an over-excavated site excavation; while blind-side application indicates the installation of the membrane occurs against an excavated shoring retention wall system, such as auger cast pilings, prior to pouring the basement walls. Under slab membrane placement would also be considered a blind-side application due to the construction sequencing. Waterproofing performance can vary dramatically depending on the application method and material. Positive-side waterproofing is an easier application due to the site access where the membrane can be inspected and repaired prior to backfill. Blind-side waterproofing performance has been more problematic as the placement of the concrete over the membrane does not afford the installer the ability to correct deficiencies. Thus with blind-side waterproofing it is even more crucial that good field quality assurance measures are undertaken prior to and during the concrete placement. It should be noted that membranes that are typically used for positive-side are generally note suitable for blind-side applications due to the reversed installation sequencing that must be undertaken. For example, a peel-and-stick self-adhering sheet membrane is suitable for positive-side applications but that same membrane is not suitable for under slab or blind-side applications.

Voltex / Voltex DS waterproofing membrane
Voltex / Voltex DS waterproofing membrane installed on shoring retention wall prior to foundation wall being cast - blind-side waterproofing application.

Geotechnical Selection Factors

Waterproofing product selection depends heavily upon the potential for hydrostatic conditions. If the project extends several levels below-grade, the project may encounter the water table. The ramification of placing the project into the water table is two-fold: the structural engineer will need to compensate for the additional forces and the waterproofing system will be subjected to hydrostatic pressure continuously or at a minimum intermittently. The requirements for membrane performance predictably increase when placed in the water table, and hydrostatic pressure exacerbates any construction defects.

Some sites possess the potential for differential settlement to occur for various reasons such as soil type or seismic activity. Settlement has important consequences for waterproofing membranes, since a structural slab may experience cracking. Slab cracking can potentially rupture an underslab membrane, allowing transmission of moisture up through the damaged membrane into the interior space above.

Backfilled wall waterproofing by CETCO
Backfilled wall waterproofing by CETCO – Voltex & Voltex DS

Hybrid Waterproofing Materials

To avoid failures and water leaks, new developments in waterproofing membranes such hybrid systems offer designers the ability to compensate for potential weakness in the waterproofing materials with regards to the site conditions and construction method. Below-grade spaces offer few choices for repair due to inaccessibility, and the addition of new waterproofing materials are a welcome addition to the industry.

There are many options available when considering approaches for below-grade waterproofing. It is important that the project team consider their tolerance for risk of water ingress with regards to the foundation construction method, and geotechnical factors when determining the most appropriate waterproofing system. A primary decision factor is the construction method, which will dictate whether blind-side or positive-side waterproofing will be used in conditions where a below-grade waterproofing membrane is required. While traditional membranes have been used successfully in the past and are still viable options, innovations on the part of material manufacturers are presenting new options that compensate for limitations that have led to failures. Hybrid materials appear to create solutions for problematic installations.

The construction industry has utilized self-adhering waterproofing sheet membranes for several decades with general success, but failures and limited performance have led to new material developments. New sheet membranes introduce measures of redundancy performance by combining passive and active materials to create hybrid products. Hybridization of below-grade waterproofing membranes seeks to combine traditional materials in an effort to counter failure trends. By recognizing modes of failure in traditional membranes, new hybrid products hope to prevent failure by incorporating several material types, and thus several different failure modes, in a single membrane. The common trend among all emerging waterproofing systems is a recognized need to perform at a higher performance level.

The trend towards hybrid products originated with bentonite being combined with polyethylene membranes. The advantage of incorporating two layers of waterproofing, regardless of integration into a single membrane, is immediately apparent: two layers of protection are better than one. Combination of waterproofing materials allows the composite membrane to harness the capabilities of each layer while enhancing the performance of both through proximity of placement. CETCO used this approach in their design of Voltex DS, which consists of a polyethylene liner combined with active sodium bentonite interlocked between two geotextiles. In this case, the polyethylene membrane layer resembles traditional passive membranes, while the active bentonite layer reacts to and seals the water that circumvents the polyethylene layer. Thereby, the bentonite layer compensates for imperfections in installation and undetected minor construction damage in the polyethylene membrane.

Waterstops

Another trend is the use of hydrophilic waterstops in the concrete construction joints as a back-up to the waterproofing membrane installed on the exterior surface of the below-grade structure. Waterstop is a material that is embedded in the concrete, across the concrete joint, to obstruct the passage of water through the joint. A waterstop installed in concrete joints is an important component of an overall waterproofing design. Use of a waterstop with a waterproofing membrane is considered a belt-and-suspenders approach to provide a dry basement. This is a common practice to waterproofing design because if for some reason water is able to circumvent the membrane the waterstop is in position to obstruct the water in the most likely place the water leak can occur – through the concrete cold joint.

CETCO Waterstop XP

Bentonite strip Water stop RX 101
Bentonite strip Water stop RX 101 / XP expanded into poorly consolidated concrete.

Recently hydrophilic swelling strip waterstops have gained in popularity due to their ease of installation and wide application utility. Among this type of waterstop are bentonite-based products like Waterstop-RX 101 / XP by CETCO. These active hydrophilic strip bentonite waterstops swell in the presence of water to form a positive seal in the concrete construction joint to obstruct water migration through the joint. Also these strip waterstops can be installed around pipes and irregular shaped mechanical elements that may pass through the waterproofing plane; an application that cannot be accomplished with traditional PVC dumbbell waterstops.

CETCO Waterstop

Remedial Waterproofing Trends

With regards to remedial waterproofing, cement grouts injected to the exterior side of a foundation wall and polyurethane grouts injected directly within the cracks of the foundation wall have been used extensively; both with varying degrees of success. The limitation with polyurethane grouts are that they are injected through a drilled hole that intersects each crack within the wall and may not actually prevent the water from entering the wall. The primary limitation for cement grout is that when it is injected it can be contaminated with the soils around the structure to make it more permeable as well as weaken its bond potential to the exterior surface of the existing concrete. To address these problems there is another remedial injection grout produced with bentonite. The bentonite-grout is injected through a drilled hole to the exterior side of the foundation wall where it fills voids and coats the exterior surface of the concrete. Unlike cement grouts, the bentonite-grout forms a strong adhesion to the outside surface of the concrete that remains plastic and pliable to maintain a positive seal. It is this plastic long term bond properties that separates it from cement grouts that will cure rigid and simply form a concrete cold joint with the existing concrete. Also for some applications the bentonite-grout can be used in conjunction with the polyurethane grout, whereby the polyurethane is injected into the wall cracks and then the bentonite-based grout is injected to the exterior to coat the wall to eliminate water infiltration into the wall to stop further corrosion of the structural foundation. For shallow depths, the bentonite-grout can be injected through a trimie pipe manually placed without excavating.

Importance of Quality Assurance

Contractors may have the most important role with regards to waterproofing – the installation. Waterproofing should be treated as a strategic building material for the long-term success of the project. For waterproofing, proper design, installation and concreting practices must be followed. Additionally, it is very important that the installer’s crew be well trained in the proper installation of the material. If the installer’s crew is not properly trained with regards to the installation of the material, it simply may not matter which product is selected.

One method to improve workmanship is for the project team to implement a quality assurance program for the below-grade waterproofing that forces the waterproofing subcontractor to establish quality standards for the work. This requires, in part, that the subcontractors follow a specific set of workmanship guides established by the material manufacturer. A quality program should require the waterproofer to complete and maintain daily reports on their installation work that includes both site maps and photos. Another practice is to specify and implement a mock-up of the waterproofing installation to set the project work standard and prove that the material can be installed properly to the project conditions. Also the waterproofing subcontractor should prepare full shop drawings so that the field installer has complete understanding of the application. Finally, specify, plan and hold a pre-construction meeting with all the applicable subcontractors that will or could impact the waterproofing installation; and express to all participants the importance of the waterproofing system as it relates to the success of the project. And during the installation timely inspections by a qualified third party inspector should be conducted throughout the course of the waterproofing system installation and backfill placement.

BentoGrout performance“BentoGrout remedial waterproofing grout injected to the exterior of the foundation to stop water infiltration.”

Conclusion

Numerous failures and costly repairs have pushed the construction industry to search for more reliable below-grade waterproofing solutions. Careful consideration of site conditions and construction methodologies can lead to successful selection and installation of below-grade waterproofing membranes so that future remedial work is limited. To avoid failures, new developments in waterproofing membranes, such as dual membrane hybrid systems combining passive and active materials offer the designer the ability to compensate for potential weakness in traditional waterproofing membranes. Finally, a quality assurance program should be planned and implemented to treat the waterproofing as a strategic building material for the long-term success of the project.

Author

Stacy Byrd and Amit Bartakke




Stacy Byrd is the Technical Services Director & Amit Bartakke Regional sales Director – India & subcontinents, a leading manufacturer of waterproofing, green roof systems, composite drainage, and water stops.
JOGANI Reinforcement: Offering High Performance Engineering Fabric Products & Solutions
Jogani Impex is considered an industry leader in providing international grade Alkali Resistant ARACC Coated waterproofing mesh, which enhances the waterproofing systems and solutions in all types of buildings and structures, while saving money

Read more ...

Waterproofing Basements - Importance & Challenges
Assess Build Chem, a leading provider of construction chemicals, is ensuring long-term protection of buildings with its innovative waterproofing solutions that include a 5-step waterproofing method for deep and large basements. Sunny Surlaker, Head

Read more ...

Agrani: Setting Benchmarks for Quality & Reliability
By adhering to the highest industry standards, Agrani Group has gained a reputation for delivering solutions that surpass client expectations, avers Ramendra Bahadur Sinha, Managing Director. In the dynamic field of specialized construction that includes

Read more ...

FAIRMATE Introduces FAIRFLO CRYSTALLINE – a Crystalline Capillary Waterproofing Admixture for Concrete
FAIRMATE is catering to the Speciality Construction Chemical Industry by manufacturing a complete range of construction chemicals, along with cost-effective solutions and world-class services. The company has a long-standing expertise in the field

Read more ...

Nippon Paint expands into Rs. 12,500 cr Construction Chemicals market
In line with its global vision, Nippon Paint India is expanding its portfolio beyond the paint and coatings product range; it will now offer products and solutions under the broad categories: Dry mix, Repair and Maintenance, Construction Chemicals, and

Read more ...

Alkali-Aggregate Reaction in Concrete Structures and Preventive Measures
When the alkali of cement reacts with the reactive constituents of aggregates, the reaction is deleterious though very slow, and the distress is exhibited when the volume inside the concrete is increased due to the formation of alkali-silica gel, causing the

Read more ...

Optimizing Existing Structures Through Retrofitting
Despite understanding the potential of retrofitting and its distinct and far-reaching advantages in making existing buildings green and sustainable, retrofitting continues to be undertaken on a very limited scale; hence, it needs to be promoted and made mandatory

Read more ...

Cause of Distress of an Old Building Through Analytical and Micro-Analytical Methods
The technical service life of a reinforced concrete building is the time in service when structural safety is unacceptable due to either material degradation or exceeding the load carrying capacity, or both. In which case, the repair strategy may be adopted

Read more ...

Value Engineering with MCI®-2019 for Concrete Maintenance and Repair
True value engineering saves money without reducing service life or affecting the quality of construction or materials. Ideally, it adds value to the project. MCI®-2019 is one such value engineering solution that can extend the service life of existing

Read more ...

Agrani Milestone Use Carbon Fiber Laminates to Strengthen Slab
Ramendra Bahadur Sinha, Managing Director, Agrani Milestone, explains the remedial measures and challenges faced during slab strengthening of a deflected slab at IIT. NBCC India Limited undertook the strengthening of a deflected slab at a G+2 storey IIT building

Read more ...

Waterproofing Challenges & Remedial Measures in High Rise Buildings
High-rise buildings need special attention when it comes to waterproofing as the challenges inherent in them are peculiar in nature. Unfortunately, there is a lack of knowledge on the remedies and products available in the market as water- proofers continue to

Read more ...

Importance of Waterproofing Structures
The longevity of structures depends on how much resistance the building element will offer to water ingress. Water leakage not only reduces the durability but also hampers the serviceability or usability of the structure; hence, a good waterproofing system will

Read more ...

Terrace Waterproofing Solutions for Energy-Efficient Buildings
Terrace waterproofing is particularly important and is considered a priority as the roof is always exposed to harsh climatic conditions and weather changes. Rajeev Gupta, Business Head, ECMAS Construction Chemicals Pvt. Ltd. An effective waterproofing solution

Read more ...

Structural Rehabilitation of Reinforced Concrete Structures
Cement concrete is one of the most important construction materials and is practically basic to present-day developments. It is strong enough mechanically, yet vulnerable to deterioration. It thus gets damaged and even fails. This deterioration may be due to the weathering

Read more ...

Thermax - HDPE-SBS Waterproofing System for Basement Waterproofing
Gradual shift in lifestyle has driven the idea of modern construction towards developing underground spaces and buried structures to bring efficiency in use of space. However, the improved efficiency comes with an increase in challenges like infiltration

Read more ...

Waterproofing in Hilly Areas with Sub-Zero Temperatures
Industry experts Kunjan Popat, General Secretary, Waterproofing Association of India; Ramendra Bahadur Sinha, Managing Director, Agrani Enterprises, and MS Sudish, Director, SIWIN Institute of Waterproofing and Insulation, share the challenges

Read more ...

Dow Sealants for Sustainable Infrastructure
Durability is a key requirement for modern infrastructure projects – highways and roads, bridges, airports and airfields, walkways and plazas, parking structures and stadiums. Miles of concrete must

Read more ...

FAIRMATE FAIRCURE WC - White Pigmented Concrete Curing Aid
Buildings have major environmental impacts over their entire life cycle. Resources such as ground cover, forests, water, and energy are depleted to give way to buildings. Today, India has demonstrated

Read more ...

Repair and Rehabilitation of A Minor Bridge in Shravasti District  (UP), India
Scour is a natural phenomenon caused by the erosive action of flowing stream on alluvial beds. Failure of bridge due to scour at their foundations, which in this case consisted of abutments and pier, one 1.2 dia

Read more ...

Faircoat Anti-Carbonation Coating Protects Concrete Structures Like Flyovers, Bridges & Buildings
To protect concrete structures like Flyovers, Bridges, Parking areas, Big Commercial and Residential Buildings, the normal decorative exterior paint will not serve the purpose as these paints are not vapour permeable

Read more ...