Fiber Reinforced Concrete in Pavements


Dr. K.M.Soni, Superintending Engineer, Central P.W.D., New Delhi

Fiber reinforced concrete is defined as a composite material consisting of concrete reinforced with discrete randomly but uniformly dispersed short length fibers. The fibers can be made of steel, polymer or natural materials. Woven fabrics, long wires, bars, and continuous wire mesh are not considered discrete fibers.

Fiber reinforced concrete is considered as a material of improved properties and not as reinforced cement concrete whereas reinforcement is provided for local strengthening of concrete in tension region. Since in Fiber reinforced concrete, fibers are distributed uniformly in concrete, it has better properties to resist internal stresses due to shrinkage. As fibers improve specific material properties of the concrete, impact resistance, flexural strength, toughness, fatigue resistance, ductility also improve.

Fibers generally used in cement concrete pavements are steel fibers and organic polymer fibers such as polypropylene and polyester.

Steel Fiber Reinforced Concrete

Steel fibers have been used for a long time in construction of roads and also in floorings, particularly where heavy wear and tear is expected. Specifications and nomenclature are important for a material to be used as the tenders are invited based on specifications and nomenclature of the items. Such nomenclature is not available in Delhi Schedule of Rates. In a work where steel fiber reinforced concrete was used for overlays just like flooring, the following nomenclature can be adopted for concreting of small thickness.

Providing and laying 40 mm steel fiber reinforced cement concrete in pavement (in panels having area not more than 1.5 sqm) consisting of steel fiber @ 40kg per cubic meter of concrete and cement concrete mix of 1:1.95:1.95 (1 cement: 1.95 coarse sand of fineness modulus 2.42: 1.95 stone aggregate 10 mm and down gauge of fineness modulus 5.99) over existing surface i/c cement slurry, consolidating, tapping, and finishing but excluding the cost of steel fibers which shall be paid separately, complete as per direction of Engineer in Charge (Cement to be used shall be OPC 43 grade and sand and aggregate have to be washed).

Second item of fibers was provided separately as “Providing and mixing steel fibers of dia 0.45 mm in cement concrete duly cut into pieces not more than 25 mm in length.”

Though the item of steel fiber reinforced concrete has been provided with a design mix of concrete, which is almost of 1:2:2 grading, it can now be used of mix like M30 or M35. Since in the executed item, the thickness was to be restricted, the stone aggregates used were of 10 mm size and below however, in case of the concrete of more than 75 mm thickness, stone aggregates of 20 mm grading can be used.

The construction was carried out more than a decade back. It isobserved that the performance of the concrete is satisfactory even after many years of construction (Figure 1). Even, no corrosion has been observed in the steel fibers. In fact the concreting has been done just like flooring item in this case over already existing hard surface. In such a case a bonding coat should also be provided like a coat of cement slurry. The fiber reinforced concrete has been provided in small panels considering the workability. Though vacuum dewatered concrete has not been done with steel fiber reinforced concrete but the same is also possible. Vacuum dewatered concrete, though cannot be done in small thickness like 40 or 50 mm but can be used if thickness is 100 mm or more.

Polymer Fiber Reinforced Concrete

Polymeric fibers are being used now because of their no risk of corrosion and also being cost effective (Sikdar et al, 2005). Polymeric fibers normally used are either of polyester or polypropylene. Polymer fiber reinforced concrete (PFRC) was used on two sites with ready mix concrete and Vacuum dewatering process.

The nomenclature can be used in the works as given here.

"Providing and laying ready mix fiber reinforced cement concrete of M35 grade (The concrete shall also have minimum works test beam flexural strength of 40 kg per sqm at 28 days) in required slope and camber in panels i/c shaping at drainage points as required using cementitious materials not less than 435 kg per cu‎m of finished concrete from ACC/L&T/AHLCON/ UNITECH or equivalent batching plant for all leads and lifts with Fibercom-CF/Fibermesh/Recron or equivalent (100 % virgin synthetic fiber size 12 mm long) to be mixed @ 900 grams per cu‎m of concrete i/c finishing with screed vibration, vacuum dewatering process, floating, trowelling, brooming and normal curing etc. complete as per standard manufacturer’s specifications and as per direction of Engineer’s in charge (All related equipment shall be arranged by the contractor. Cost of centering, shuttering, grooving etc. shall be paid separately. Design Mix shall be got approved from the Engineer in Charge).

In both the sites, vacuum dewatered concrete was used. Both the sites are to be used for parking. In a site, fiber reinforced concrete was used over a base cement concrete of lean mix of 1:4:8 (Figure 2) while in other site it was laid over water bound macadam (WBM) (Figure 3).

When dewatered concrete it has no problem of water being coming out on surface during compaction process but when it is done over WBM, a lot of concrete water is soaked by WBM and thus the concrete loses the water to WBM and the water which comes out during dewatering/compaction process is not in same quantity asin case of lean concrete. It appears that it is better to provide base concrete than WBM as the base. The groove was made in one case before setting of concrete and also panels were cast with expansion joints in one direction. No cracks were observed in the direction in which expansion joints were provided assuming this is longitudinal direction. In lateral direction, no joints were provided and the width of such panel was about 12 m. It was later observed that cracks have developed in this direction (Figure 4).

As it is known that the width of 12 m is too long for expansion/ contraction. It has been observed that almost at about one–third of the panel width, such cracks developed i.e. size of panel from one side is about 4 m and from other side it is about 8m. From the site observation, it is therefore inferred that the panel should have the size of about 4m x 4m in the temperature conditions of Delhi however small variation can also be made as per site conditions. In other case, the contractor delayed the cutting of grooves and thereafter the area was occupied due to some urgent requirements, the cracks in both the directions developed. The cracks were almost in line. Later on the grooves were made through cutters. It has been observed that the distance of cracks in one side was almost near to 4 m and on other side at about 7 to 9 m (Figure 5). Thus from this case study also, inference can be made that grooves if made in panels of 4m x 4m, it would be appropriate.

In both the cases, no lateral grooves were made, as working was not a problem due to use of vacuum dewatering process. In both the cases, horizontal line cracks have been observed indicating that the grooves in other direction are also essential. From this, it is imperative that polymer fiber reinforced concrete should be laid in panels or grooves should be provided so that concrete acts like in panels. Cutting grooves is easy as it can be made after casting of the concrete. But it should not be delayed for long and should be made before concrete achieves its desired strength. The size of panels may be kept around 4m x 4m.

Conclusions

Fiber reinforced concrete has advantage over normal concrete particularly in case of cement concrete pavements. Polymeric fibers such as polyester or polypropylene are being used due to their cost effective as well as corrosion resistance though steel fibers also work quite satisfactorily for a long time. It appears that fiber reinforced concrete should be laid on base concrete of lean mix such as 1:4:8 cement concrete rather than over WBM and provided with grooves in panels of about 4m x 4m to avoid expansion/ contraction cracks. Grooves can be made after casting of concrete through cutters.

References

Sikdar, P.K., Gupta, Saroj, Kumar Satander (2005). Application of Fiber as Secondary Reinforcement in Concrete. Civil Engineering and Construction Review, December issue, pp 32-35.,

NBMCW May 2007

Ashoka Buildcon constructs Package 4 of landmark Eastern Peripheral Expressway project

Ashoka Buildcon, which was awarded package 4 of the EPE project, constructed 22km of the 135 km EPE, at a cost of ₹789 crores. It built three grade separators, one ROB, 12 VUPs, 22 PUPs, four minor bridges and 20 Read More ...

Wirtgen: Cold milling machines have a decisive impact on quality of road rehabilitation

Wirtgen offers the widest range of cold milling machines in the industry. Customers can choose from more than 30 different types of machines, with each also available with a variety of milling widths. The lower Read More ...

Smart Pavement Materials and Emerging Technologies

Smartness describes self-adaptability, self-sensing, and multiple functionalities of the materials. These characteristics provide numerous possible applications of such materials in manufacturing and civil Read More ...

Repair of Scaled Surface Areas of Newly Constructed Cement Concrete Pavement Slabs

After 2014, the speed of the construction of cement concrete road for national highways and expressways, in cities and even at village level has significantly increased due to the policy adopted by the Government of India Read More ...

ArcelorMittal Long Products - Benefits of steel solutions in bridge design

Today's modern bridge construction projects face totally new challenges. The public, the regulators and the authorities demand structures that are cost effective during their planning, execution, lifetime and dismantling. Read More ...

From Yarn to Bridges – Strata Takes Another Giant Leap in Technical Textiles

Strata Geosystems, a global leader in the soil reinforcement industry, has opened its new state-of-the-art manufacturing facility, which will meet the growing demand for geosynthetic products in India and around the Read More ...

Bogibeel Rail-cum-Road Bridge

There are a lot of legends and prophesies floating with the current of the mighty Brahmaputra River as it tracks its course from Tibet to Bangladesh, roaring down through narrow chasms and gobbling up land in its pursuit Read More ...

Advantages of Precast Concrete in Constructing Highways & Bridges

Prefabrication of any structure component off-site during highway construction (or reconstruction) offers major time and user cost savings in comparison with the traditional cast-in-place methods of construction. Read More ...

Long-life Pavements - European & American Perspectives

Long-life Pavements European & American Perspectives Road infrastructure investment has increased less in many countries than road traffic. If these trends continue, the outcome will be increasing intensity of Read More ...

Performance Management for Durable Pavements

Satisfactory pavement performance can be assured only with an appropriate design with a well-calibrated algorithm, material selection based on the appropriate mix design, proper processing of the materials for Read More ...

Experimental Study on Tunnel Excavation Muck for Road Construction

Substantial parts of India are covered by hills and Himalayas stand foremost among them. The border areas in the North and North-East of our country are mountainous with steep topography, difficult and hazardous Read More ...

Geocells For Pavement Reinforcement

Roads are essential for the economic growth of the country, and unlike the railway network, various classes of roads-from expressways to rural road, assure last mile connectivity. India’s growing economy requires Read More ...

Pervious Concrete Technology for Urban Roads and Pavements

Pervious Concrete Technology for Urban Roads and Pavements In recent years, the rise in employment and higher standard of living, amongst numerous other factors, has led to a gradual shift of people from rural to urban Read More ...

Durable and Economical Technology for Bituminous Surfacing of Rural Roads

The Pradhan Mantri Grameen Sadak Yojna (PMGSY) has been one of the most successful flagship programmes launched by former Prime Minister Atal Bihari Vajpayee in 2000 for constructing a wide network of rural roads Read More ...

Precast Concrete - Smart Pavement - The future of road building

The term “information superhighway” was introduced in the 1990s. Back then, it was used to describe a worldwide communications network. Today, Kansas City, Mo.-based Integrated Roadways is putting a different Read More ...

Faster & Better Road Construction is Possible

Road Transport & Highways minister Nitin Gadkari has time and again been urging to use more of innovative techniques and materials for faster and better-quality construction of roads and highways. While launching Read More ...
NBM&CW

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture
L&ST

Lifting & Specialized Transport

Lifting & Specialized Transport
II&TW

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week