India's Repair Industry Needs a Responsibility Criteria

Reinforced Concrete has become a material of choice and is the second most consumed material per capita in the world, after water. The Indian Construction Industry is set to rise from a value of US$ 428.1 billion today to US$ 563.4 billion in 2020 (R¹). Exponential growth in Indian concrete construction over the past 40 years has concurrently created a very sizeable need as well as a market for repair-related activities.

Dr. S. K. Manjrekar, CMD, Sunanda Speciality Coatings, Mumbai

Repair Industry

Size of repair industry in India

In India, the repair industry is not organized, hence, the exact numbers on annual cost to owners/public funding for repair, protection & strengthening are not available. Today, India is placing new concrete to the tune of approximately 1.75 - 2 billion m3/per annum, which of course needs to be protected. If we look at the already placed concrete in the past 50 years, it would be 55 - 60 billion m3 which now needs much more protection.

Essentially, deterioration of concrete takes place due to environmental factors, damage caused to structures due to basic defects in the concrete structures, and change of use, which can take place subsequently. Almost all the concretes are made as per the structural requirement of each structure, and most of its concrete is typically specified. These concretes have to use local material from multiple sources having a different quality, which can be marginal. Sometimes, the mix designs also are not standard and at times one has to work at neck break speed to produce the output, which results in accelerated construction processes, but may sacrifice quality.

These factors lead to malfunctioning and early distress signs in a structure. This has led to the rise of the repair industry, which is likely to become a parallel industry in the construction industry. In India, the repair market, though of a large size and spread over all nooks and corners of the subcontinent, is not organized. Yet, the magnitude can be realistically worked out by intrapolation as well as extrapolation. When intrapolated with regards to the distress and the health of inventory over the past 40 years, the annual cost to owners for repair, protection and strengthening could be estimated between US$ 40 to 45 billion.

corrosion map india
Figure 1: R1: http: // www. Concareplus .com/technology.htm, R2: www.indianmirror.com

Why India's repair industry is rising
  • India is the second largest manufacturer of cement; hence its total inventory of various structures is also large, with a major part needing repairs after obvious distress signals and based on their health assessment.
  • India has transitioned from 15 MPa to 60 MPa in the span of 50 years as a general trend, though till two decades ago, the prevailing strength was 15-25 MPa. This means that inventory of lower grade structures exist as a legacy of the past.
  • Low concrete cover, low w/c, site mixing, associated with chloride attack due to advent of traffic jamming number of vehicles and continuous industrialization and carbonation has worsened the scene.
  • India is a hot weather country and has a long coastline of 7000 kms with high humidity and tropical climate. Over 35000 square kms of coastal area is under constant attack of airborne chlorides. Fig 1.
Practice of Repair in India

Practice and processes of repair include the following:
  • To remove deteriorated loose concrete
  • Expose corroded reinforcement
  • Semblance of cleaning and removal of corrosion products on heavily corroded steel
  • Use of chemical, rust removers to remove corrosion products on corroded steel rebars
  • Use of bonding agents
  • Use of speciality polymer mortars as per global industry norms/specifications.
  • Use of protective coatings.
The exponential growth of repair industry and unsatisfactory performance in the past 40 years has resulted in highlighting several shortcomings and need for improvements in:
  • Materials
  • Design practices
  • Installation procedures
  • Contracting processes
  • QA/QC procedures
  • Education and allied several aspects.v
Despite challenges, growth in repair activity is continuous, because of the noticeable manifestation of distress in the form of cracks, delamination, failure and even sudden collapse, for which the building owner/user seeks urgent attention to allay his fears of safety. News of building collapses and loss of life draw attention to the alarming possibilities. A large inventory of the concrete in India is over 10 years old. Most of this concrete was site mixed and without many controls. Naturally, it is more vulnerable to carbonation, chloride attack, loss of alkalinity, and attacks by other aggressive chemicals etc.

Longevity of Repairs

The short life cycle of repairs is raising questions on the knowledge and awareness about the technical competencies of related personnel and agencies. Rebuilding of older structures is not the general norm; hence, structures are typically repaired and often re-repaired.

Engineering students/working engineers are not taught concrete or the science of steel corrosion with an emphasis on special repair materials like Polymers, Epoxies, Protective Coatings, Nano Materials etc. Since repair is not a subject in engineering schools, many areas remain "grey" due to lack of formal training, education, and hands-on training on the repair materials and processes; this results in short life cycle of the repairs.

Performance of Repairs

One of the largest inventories of concrete structures is with the U.S. Army Corps of Engineers and their experience is given in Fig 2:

inventories of concrete

That means even in an advanced country like USA, barely 50% of the repairs perform satisfactorily and the remaining repairs fall under the fair, poor, failed categories due to problems in design, installation, materials, and other parameters. What could be the success rate in the repairs in India and why: possible extrapolation of repairs in India is given in Fig 3:

The analysis of re-repairs pattern shown in Fig 4 by Tuutti is very applicable to repairs in India. However unorganized, repairs is a big industry in India and merits judicious attention to control the colossal loss to national wealth by avoiding frequent failures. Repair operations are extremely sensitive and important. Various steps involved in repair projects are dependent on the knowledge level of the specifier. More often, the specifications are copied from one specifier/job to another. As a result, though repairs intended to extend the service life of buildings, the structures often seem to fail prematurely due to the improper strategy of repairs and lack of defined responsibility criterion.

end of serviceability
R4: Tuutti Kyosti, (1982) CBI Research Report 4:82, 304 p

Trained personnel are required, but quite often, semi-skilled persons are employed in projects. Realization comes after sub-standard quality of repairs leads to failure and irreversible loss. A small number of engineers charge a nominal fee, which is not the accepted norm of repair industry. However, gullible people succumb to this and awarding the projects, particularly the small-sized projects. There is also a mushrooming of repair chemical suppliers who seem to indirectly advise the small client on using inappropriate chemicals in a wrong way.

Hence, a strategy is presented to increase the accountability of stakeholders in the repairs industry through an understanding of individual and collective responsibilities.

There are several operations needed in any repair job, depending on the type and extent of damage, and involve the stakeholders from the following trades:
  • Membranes, Sealants, Coatings
  • Waterproofing
  • General Concrete Repairs
  • Surface Preparation – Hydro/Shot blasting/chipping
  • Grouting/Crack Injection
  • Foundation Underpinning
  • Gunniting/Shotcrete
  • Underwater Repairs
  • Industrial Floor Repairs
  • Formwork
  • Steel Placement
  • Post-Tensioning
  • Cathodic Protection
Here comes the need for Specialist Contractors, and the specific responsibilities to be undertaken by designers, contractors and government agencies. Individual repair projects are smaller in value as compared to new construction projects, which makes it difficult for government authorities to give permissions and completion certificate for all these projects due to their enormity and sheer numbers. However, it is imperative to make sure that the Consulting/Practicing Engineer is specially trained and certified for repairs technology and practices, as this is a totally different science of civil engineering, which deals with material properties and the behaviour of the structure as a result of deterioration.

Structure
Special training courses/certification exams /eligibility criteria must be worked out. This is not a difficult task as abundant reference material is available locally and globally. Otherwise, in the absence of such a unified procedure, every qualified civil engineer will have to wear the several caps of an NDT expert, material specialist, corrosion expert, etc. But this is possible when the engineer is qualified in multiple specialties. More often, the story becomes like an Elephant and Six Blind Men (fig. 5).

Action required to improve performance of repairs in India

In India, due to unorganized nature of the industry and outdated methods of execution, the performance of a structure after repairs would be still marginal, as illustrated in figure 5. Individual repair contracts are smaller in value as compared to new projects and hence multi-level supervision is difficult and uneconomical. So, the final responsibility comes on the client's appointed consulting engineer and the contractor. Often times, the entire (360°) approach including the analytical, diagnostic and QC parameters for the contract, both in prescriptive and performance format, are not known to either the consultant or the contractor. This is more because of the multifaceted complexity of the subject and ignorance.

The logical solution is to increase awareness and define responsibilities of all the stakeholders in the repair industry. There are several beneficiaries of the repairs industry:
  • Engineers
  • Architects
  • Researchers
  • Contractors
  • Educators
  • Testing companies
  • Equipment suppliers
  • Material manufacturers
  • Lawyers
  • Most importantly, the Building Owners
Most of the concerned stakeholders need to upgrade their skills with a knowledge of the latest repair materials, applications and processes. Individual and interdependent responsibilities of all the stakeholders should be well defined so as to improve service life, reduce costs and prevent conflict. However, merely fixing responsibilities is not enough; having the technical know-how is imperative if the repair Industry in India is to have a significant success rate.

fig 6

At various levels, following age-old procedures, equipment and materials, is still prevalent in India. Stakeholders now need to base their actions on state-of-the-art repair materials and processes. Appointment of specialty engineer, who is by definition a Licenced Design Professional should be retained by the contractor as well as the building owner.

guide concrete construction
A dedicated group of contractors, engineers, material manufacturers, researchers, educators, owners, material scientists and industry associations needs to be formed to resolve the various problems and seek solutions. Looking at the size of the industry, a nodal federal agency should also participate and bring credibility and authority to the recommendations of the group. This would be a faster and far reaching approach than leaving the improvement issue for the repairs industry to resolve. It must be made a time-bound initiative in the interest of all the stakeholders. The draft of the code will be reviewed by all concerned and then circulated throughout the industry for suggestions.

This task group should develop a 'vision' which will be fluid and change as the repair industry is an ever-growing, dynamic industry. Various improvements would make a qualitative difference and also bring about a 'total responsibility concept' and will reduce mistakes in repair methods and choice of materials; poor performance, and poor workmanship.

The task group must look for better repair methodologies that reduce costs by delaying or avoiding re-repairs and enhance service life. Their vision accompanied by the goals will help the industry, client, research institutes, federal departments like roads, railways etc.….. and all the stakeholders. The vison could encompass sub-issues such as the following:
  1. Repairs Industry must be made a fully organized sector by forming a federation or trade association.
  2. Indian repairs industry should have outreach beyond civil engineering to establish mechanisms for inter-organizational and inter-disciplinary cooperation to create state-of-the-art technology as well as its dissemination.
  3. Indian Concrete Repairs Institute (ICRI) will be formed on a national level which will have affiliations to other such global institutions, and facilitate Technology Transfer.
  4. Develop and implement the methodology to hasten documents creation and dissemination within industry stakeholders.
  5. Create a repairs/rehabilitation code to enhance the evaluation, design, materials, field and inspection practices, which raise the level of performance of repairs and protection systems.
  6. Establish clear responsibilities and authorities for all participants. This should provide the local government officials/authorities a guideline to issue licenses to concerned stakeholders.
  7. Develop performance-based guide specifications for specific and generic repair designs. This will instill confidence in customer and also will bring a systematic approach to the repairs Industry.
  8. Improve Repair materials design and performance to eliminate cracking, to carry structural loads, and to define properties of set and cured finished repairs
  9. Develop environmental and worker-friendly repair methods, equipment, and materials that will greatly reduce the adverse effects on workers, the public and the earth's ecosystem.
  10. Develop a means for predicting repairs system performance to help ensure use of proper materials, design details and installation methods, based on predictive models validated by experience.
  11. Develop and implement a strategic research plan for the repairs industry with University, Industry, Government (UIG) partnership.
  12. Create conducive environments to increase the number of materials, engineering, and construction-related professionals interested in upskilling their repair and protection practices. This will support the growing need of trained and qualified personnel for evaluation of design, new materials, and construction practices related to repairs.
  13. Develop selection processes, contractual agreements, procurement methods and relationship arrangements (partnering) that will greatly reduce conflicts, rework, claims and lawsuits resulting from disagreements among contractors, general contractors, engineers and owners. For eg. a reference of recommendations in ACI 132 for adopting as a guide for repairs industry can be followed.
  14. Develop client education programs that will promote awareness of the effects of deterioration and the means to reduce the risks while protecting their investments.
  15. Develop improved means and methods for accurate and thorough condition assessment.
  16. Develop specific repairs system needs for expanded use, efficiency, and failure reduction.
  17. Train and assimilate the unorganized sector in the mainstream by knowledge dissemination and inclusion in trade associations. It would be a national program executed all over the country. Skilling is a large initiative undertaken by the Federal Government of India with a special ministry.
  18. Evolve specifications and standards for the performance criteria of repairs, matching with International Standards in collaboration with Bureau of Indian Standards (BIS).
  19. Members of the Industry should engage in continuous innovation, based on the conditions of Indian subcontinent as well as training the personnel/applicators on a regular basis and in a structured manner.
fig 7

The strategy will keep evolving as it is just the beginning of making an incredibly large business more structured and responsible. The vision 2025 will ascertain the improvement in the repairs performance as shown in Fig 7.

Important note: This article is based on studies and experience of authors' 35 years in India's building repairs scenario and exhaustive referencing from published works. However, the conclusions and recommendations are entirely personal and based on experience in national & international projects, which means there can be another viewpoint as well, and together with which, the performances of repairs would improve substantially.

NBM&CW February 2019

Repair & Rehabilitation of Concrete Structures - A Paradigm Shift

Repair and rehabilitation of rapidly deteriorating structures is a matter of concern for most countries in the world. Deterioration is observed in the form of cracking and corrosion (Riveros et al., 2018). It is very difficult to Read More ...

Preservation of Capex Towards Industrial Cooling Towers

Industrial Cooling Towers are used to remove heat through evaporation of water in a moving air stream being carried from various sources such as a machinery or some heated process material. Their main use is to remove Read More ...

Rehabilitation of Overstressed Rigid Pavements

Due to shortage of resources like cement as well as finances, hardly any concrete roads were constructed in free India, though, in the long run they are cheaper than bituminous roads, was an established fact. Some internal Read More ...

Concrete Repair: Principles from EN 1504 and Practical Considerations

Many a times, even after taking all the due precautions and all quality control measures, Concrete structures deteriorate. One of the practical reasons is due to the fact, that at the time of planning or at the design table Read More ...

Repair & Rehabilitation to improve life-span of buildings

Across Indian cities, there are millions of old buildings that are in a dilapidated condition. In Mumbai alone, there are 14,375 dilapidated structures across the city and another 10,500 in the suburbs. Such structures pose an Read More ...

Repair/Rehabilitation of Structure

UPV Test in Progress
A structure, when it is constructed, has generally got a service life. The service life is dependent on the quality, workmanship of the construction and various other factors including materials, components, Read More ...

Remedial measures for reinforced concrete structures using cementitious materials

Remedial Measures for Reinforced Concrete Structures
An essential part of a successful repair of concrete structures, is to establish the underlying cause and extent of concrete deficiency, and deterioration mechanism. For a repair to be successfully completed, Read More ...

Latest Techniques for Repair & Rehabilitation- A Perspective

Latest Techniques for Repair Rehabilitation
For a successful repairing work of a structure, the most vital things to be considered are identification of the root cause, selection of the right products & methods, proper repairing of the damage by skilled Read More ...

Durable Repairs State-of-the-art Corrosion Mitigation Techniques

Steel Protected in Carbonated Concrete
Most of today's concrete construction relies on the composite interaction of concrete and steel, which is aided by the near equivalence of their thermal expansion characteristics Read More ...

Concrete Repair: Principles, Guidelines and Practical Considerations

Steps For Repair
India has witnessed a tremendous spurt in construction over the last couple of decades. Residential, Commercial, Industrial and Infrastructure construction and expansion has been progressing Read More ...

Polymers blend for repair applications (Epoxy resins & polymers)

Micrographs of Polymer Blends
Epoxy resins are widely used as highly cross linked materials in various repair applications where special performances such as good mechanical, thermal and electrical properties are required Read More ...

Concrete structures repair & Rehabilitation - Causes of Distress & its Solution

Concrete Degradation
CONCRETE DEGRADATION may have various causes & reasons. It can be damaged by factors like fire, alkali - aggregate reaction expansion, sea water effects, bacterial corrosion, calcium leaching, physical Read More ...

Soil Strengthening – Use of Pressure Injection Grouting as a means of Improving Load Bearing Capacity of Existing Foundations

Ejection of Underground Water
This Paper describes the procedure for improving the Load bearing capacity of the foundations by means of strengthening the soil under and around the foundations. Use of Injection grouting in the Read More ...

Retrofit of R.C. Beams & Columns

Finite Element
During the last week of March a few years ago, author was invited by a certain Company in an Indian city to review and advise upon measures to strengthen the ground floor and basement beams and columns Read More ...

Stainless Steel Rebar: A Necessity for Coastal Regions

Ferritic Stainless Steel
Both stainless steel and carbon steel derive their corrosion resistance from a naturally occurring chromium rich oxide film, which is present on its surface. This invisible film is inert, tightly adherent Read More ...

Rigid Pavement Repair and Maintenance Strategies

Rigid Pavement Repair
The rapid growth in road construction brought about considerable expansion of road infrastructure, which subsequently fell into disrepair through lack of maintenance. The damage is Read More ...
NBM&CW

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture
L&ST

Lifting & Specialized Transport

Lifting & Specialized Transport
II&TW

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week