Impact of Admixture on Heat Gain through Mixed Concrete Roof into a Building

Dr. B. M. Suman, Principal Technical officer, CSIR- Central Building Research Institute, Roorkee

Experimental investigation has been carried out to study thermal performance of various admixtures and their mixed concretes with different ratio and density. There are nine admixtures mixed with concrete for studying their thermal performance. Some of them are Fly ash, Perlite Powder, EPS beads etc. The study of sixteen mixed concretes were carried out and compared with thermal performance of cement concrete. Heat gain were computed for 11.5 cm thick roofing sheets made up of all the mix concretes and cement concrete. According to this study thermal performance of EPS concrete with 30% EPS beads found to be better than all other concretes. The AAC performance was next to EPS concrete followed by the performance of perlite mix concrete with 50% expanded perlite. The other good performer is the vermiculate concrete reducing 41.5% heat gain when compared to cement concrete. It is also found from the study that the mixed concrete with lower overall thermal transmittance allows minimum heat flow across it.


Number of thermal insulation materials with fine particles is available to mix with concrete to improve thermal behaviour of mixed concrete. The admixtures are mixed in different ratio with concrete to enhance their thermal characteristics for energy efficiency points of view. Heat gain principle through building fabrics depends upon temperature difference between outside and inside of a building. High temperature difference allows higher heat flow into the building. Heat flow always takes place from high temperature to low temperature. In this process temperature difference is not the only criteria of heat flow but solar radiation, absorptivity and emissivity, external heat transfer coefficient are also influencing the heat ingress into the building. By combining these parameters and outdoor air temperature a new parameter known as sol air temperature which is responsible for heat flow into the building. The conduction heat transfer through structure is of great importance in civil engineering problems. Such problems include, energy efficient building design, thermal load of structures due to diurnal variations of temperature, planning and design of building for thermal comfort, design of radiation shield and other exposed structures for solar thermal loading etc. The knowledge of thermal conductivity and other thermal transport properties of construction material involved in the process of heat transfer are essential in predicting the temperature profile and heat flow through the material. Most of the commercial and residential buildings are now air condition building. Therefore consumption of power and electricity is increasing exponentially. One of the ways of achieving energy conservation in building construction is by introduction of thermally insulated admixture with concrete for building application. Number of concrete manufactures supply such mixes concrete but no one provide relevant data on thermal behaviour of their products. Therefore an experimental investigation was undertaken to understand the influence of various admixtures on density and thermal performance of mix concretes. Number of studies [1, 2] has been made to know the effect of ceiling insulation on the electricity consumption and creating conducive indoor thermal environment. Some of the studies carried out [3, 4] in South Africa revealed that insulated houses are not only warmer in winter but also cooler in summer months. Density of building material plays a key role in determining thermal performance of building section because a masonry building material with low density has decreased thermal conductivity. The derived thermal properties like overall thermal transmittance and subsequently heat gain through the material depend upon its thermal conductivity. Heat gain [5] through roofing sheet will be lower, if thermal conductivity of the material used in roofing sheet is also lower. The mix concrete [6] of low thermal conductivity is useful for building insulation. Bouguerra [7] et. al reported that thermal conductivity of light weight concrete changes considerably with its porosity and density. Roof is the main contributor of heat gain into the building. Sustainable building design [8-10] with mixed cement concrete prepared by mixing admixture with thermal insulation property can be developed. Foam concrete, Vermiculite concrete, Perlite concrete and EPS concrete are some example of such materials. Sol air temperature (Tsol) is the main factor, responsible to heat flow from outside to inside of a building which includes the effect of outdoor air temperature and solar radiation of the place, surface properties like reflectivity, emissivity, and absorptivity of building section. In the present study, sol air temperature will remain same for all cases of study for determining heat gain into the building.

NBM&CW October 2015

Click Here
To Know More / Contact The Manufacturer
Please provide your details we will contact you as soon as possible
Choose Title from the listPlease let us know your name.
Please let us know your Designation.
Invalid Input
Please let us know your email address.
Please let us know your City.
Please let us know your Contact Number.
Please brief your query.
Our other value-added services:

To receive updates through e-mail on Products, Technologies, equipment, please Select the Product Category(s) you are interested in and click Submit. This will help you not only to save time but also to get best quote for right products from many manufacturers of the same category; it helps you to evaluate and negotiate the best price.

Equipment & Machinery
Invalid Input
Building Products
Invalid Input

Mechanical Properties of Geopolymer Concrete with Alternative Materials

Concrete is considered the world’s most versatile, durable and reliable construction material, next only to water. It is the most consumed material requiring large quantity of cement, fine aggregates, course aggregates Read More ...

Ferro-Sialate Geopolymer using Red Mud

Geopolymer is being used as a replacement for Portland cement for over the past three decades. The technology utilizes material rich in silica and alumina, either processed geological material or industrial byproducts Read More ...

Geopolymer Concrete - The Eco Friendly Alternate to Concrete

The name geopolymer was given by “Joseph Davidovits” in 1978. Geopolymer concrete (GPC) is an eco friendly product which uses industrial waste by-products such as fly ash (waste from thermal power plants) and ground Read More ...

Compressive strength study of Geopolymer Mortar using quarry rock dust

T. Venu Madhav, Head Department of Civil Engineering, Audisankara College of Engineering & Technology, Gudur, Andhra Pradesh, India. I.V. Ramana Reddy, Professor, Department of Civil Engineering, S.V.U. College of Engineering Read More ...

Use of Factory Made Reaction Generating Liquid (RGL - SRGPJ1) to Produce Geopolymer Concretes

Geopolymer binders, formed by alkaline activation of aluminosilicate precursors, are attracting interest as “green” cements because of their use of industrial wastes such as geothermal silicas, fly ashes and mineralogical Read More ...

Performance Evaluation of Fly ash and GGBFS Blended Self-compacting geopolymer concrete

An attempt has been made to develop Fly ash (FA) and Ground granulated blast furnace slag (GGBFS) blended self-compacting geopolymer concrete mixes with varying volume of pastes using conventionally available river sand Read More ...

Robustness of Self-Compacting Geopolymer Concrete (SCGC)

It’s widely known and has been reported on numerous occasions and in multiple journals that concrete is one of the most used construction materials in the world. With current cement production in excess Read More ...

Recent Developments in Concrete Technology

Recently, two new developments in concrete technology can have a far reaching impact on the way we consume concrete in construction. Concrete happens to be the largest in terms of weight—being about more than 5 tonnes per capita Read More ...

Green Products from the House of JSW Cement

"Through our wide range of future-ready, superior quality green products, we meet the evolving demands of the construction industry in India," avers Lopamudra Sengupta, Vice President (Technical services) JSW cement Read More ...

Sensitivity Analysis of Cable Profile of Prestressed Concrete Beams

The cable profiles for post-tensioning of concrete beams are usually designed as parabolic curves based on the eccentricity of the midpoint of the duct to the neutral axis of the beam. The end points and the midpoint of a duct are very important Read More ...

Overview of Concrete Ingredients, Concrete Mixes and Durability Requirements in Arabian Peninsula

Arabian Peninsula usually has either a tropical or subtropical arid desert climate or arid steppe climate. Arabian Desert - the great desert region in the extreme southwestern Asia - occupies almost the entire Arabian Peninsula. Read More ...

Industry 4.0 in Construction 3D Printing

The discovery of fire has generally been considered as the first and most significant discovery of mankind. Millenia and four industrial revolutions later, humanity has forged ahead and shown no signs of slowing down the scientific and technical Read More ...

Sustainability of Concrete Using Copper Slag as Replacement for River Sand

Concrete consumption is so extensive that it stands second to water. Spiraling urbanization has led to excessive consumption of concrete, which has increased the demand for sand, cement and coarse aggregates. The sand consumption across Read More ...

GGBFS Replacement for High Early Strength Concrete for Precast Industry

The Precast Concrete industry is one of the thriving industries in the wake of faster development with high quality standards. The initial capital cost for precast construction is higher than for conventional concrete. The chief requirement Read More ...

Simple Guidelines for Producing Sustainable, Durable and Economical Concrete

There is a dire need to control environmental pollution across the world. Concrete is a must for infra development. Cement, which is the main binding material for concrete, adds CO2 to the environment. At present 7.4% of CO2 is contributed Read More ...

Design & Construction of Composite Structures

Arun Nadig, Director, Nadig Consulting, presents two award-winning projects in composite construction technique for modern office spaces, which have been duly recognised by the Construction Industry Development Council (CIDC) for Read More ...

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture

Lifting & Specialized Transport

Lifting & Specialized Transport

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week