Impact of Admixture on Heat Gain through Mixed Concrete Roof into a Building

Dr. B. M. Suman, Principal Technical officer, CSIR- Central Building Research Institute, Roorkee

Experimental investigation has been carried out to study thermal performance of various admixtures and their mixed concretes with different ratio and density. There are nine admixtures mixed with concrete for studying their thermal performance. Some of them are Fly ash, Perlite Powder, EPS beads etc. The study of sixteen mixed concretes were carried out and compared with thermal performance of cement concrete. Heat gain were computed for 11.5 cm thick roofing sheets made up of all the mix concretes and cement concrete. According to this study thermal performance of EPS concrete with 30% EPS beads found to be better than all other concretes. The AAC performance was next to EPS concrete followed by the performance of perlite mix concrete with 50% expanded perlite. The other good performer is the vermiculate concrete reducing 41.5% heat gain when compared to cement concrete. It is also found from the study that the mixed concrete with lower overall thermal transmittance allows minimum heat flow across it.


Number of thermal insulation materials with fine particles is available to mix with concrete to improve thermal behaviour of mixed concrete. The admixtures are mixed in different ratio with concrete to enhance their thermal characteristics for energy efficiency points of view. Heat gain principle through building fabrics depends upon temperature difference between outside and inside of a building. High temperature difference allows higher heat flow into the building. Heat flow always takes place from high temperature to low temperature. In this process temperature difference is not the only criteria of heat flow but solar radiation, absorptivity and emissivity, external heat transfer coefficient are also influencing the heat ingress into the building. By combining these parameters and outdoor air temperature a new parameter known as sol air temperature which is responsible for heat flow into the building. The conduction heat transfer through structure is of great importance in civil engineering problems. Such problems include, energy efficient building design, thermal load of structures due to diurnal variations of temperature, planning and design of building for thermal comfort, design of radiation shield and other exposed structures for solar thermal loading etc. The knowledge of thermal conductivity and other thermal transport properties of construction material involved in the process of heat transfer are essential in predicting the temperature profile and heat flow through the material. Most of the commercial and residential buildings are now air condition building. Therefore consumption of power and electricity is increasing exponentially. One of the ways of achieving energy conservation in building construction is by introduction of thermally insulated admixture with concrete for building application. Number of concrete manufactures supply such mixes concrete but no one provide relevant data on thermal behaviour of their products. Therefore an experimental investigation was undertaken to understand the influence of various admixtures on density and thermal performance of mix concretes. Number of studies [1, 2] has been made to know the effect of ceiling insulation on the electricity consumption and creating conducive indoor thermal environment. Some of the studies carried out [3, 4] in South Africa revealed that insulated houses are not only warmer in winter but also cooler in summer months. Density of building material plays a key role in determining thermal performance of building section because a masonry building material with low density has decreased thermal conductivity. The derived thermal properties like overall thermal transmittance and subsequently heat gain through the material depend upon its thermal conductivity. Heat gain [5] through roofing sheet will be lower, if thermal conductivity of the material used in roofing sheet is also lower. The mix concrete [6] of low thermal conductivity is useful for building insulation. Bouguerra [7] et. al reported that thermal conductivity of light weight concrete changes considerably with its porosity and density. Roof is the main contributor of heat gain into the building. Sustainable building design [8-10] with mixed cement concrete prepared by mixing admixture with thermal insulation property can be developed. Foam concrete, Vermiculite concrete, Perlite concrete and EPS concrete are some example of such materials. Sol air temperature (Tsol) is the main factor, responsible to heat flow from outside to inside of a building which includes the effect of outdoor air temperature and solar radiation of the place, surface properties like reflectivity, emissivity, and absorptivity of building section. In the present study, sol air temperature will remain same for all cases of study for determining heat gain into the building.

NBM&CW October 2015

Click Here
To Know More / Contact The Manufacturer
Please provide your details we will contact you as soon as possible
Please let us know your name.
Invalid Input
Please let us know your Designation.
Invalid Input
Please let us know your City.
Please let us know your State.
Please let us know your Country.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.

Design & Construction of Composite Structures

Arun Nadig, Director, Nadig Consulting, presents two award-winning projects in composite construction technique for modern office spaces, which have been duly recognised by the Construction Industry Development Council (CIDC) for Read More ...

Self Concrete Mixer: AJAX Soaring Up New Heights!

AJAX, a world-class leader in providing concreting business solutions, was established in 1992 for manufacturing Self-Loading Concrete Mixers. Today, it is positioned as a global leader in this product category. Over the years Read More ...

Durability of Concrete made with Marble Dust as partial replacement of Cement subjected to Sulphate attack

This experimental study presents the feasibility of the production of more durable concrete with marble dust as partial replacement of cement by 5%, 10%, 15% and 20% by weight. Standard concrete cube specimens of size 150mm×150mm×150mm Read More ...

Putzmeister Delivers 5,000th Stationary Concrete Pump

Putzmeister India recently rolled out its 5,000th Stationary Concrete Pump from its factory in Verna, Goa. Established in 2007, Putzmeister offers customers in India, Nepal, Bangladesh, Bhutan, Sri Lanka and Maldives concreting Read More ...

Upscaling the Use of Recycled Aggregate Concrete

This paper presents an overview of several aspects that can further upscale the use of recycled aggregate concrete. It presents the main steps that need to be followed to demolish existing barriers to the use of recycled Read More ...

Challenges Facing the Concrete Industry

There are still a number of challenges facing the Concrete Industry. From a political and social viewpoint, improving the sustainability of concrete construction has to be the first challenge, not because concrete solutions are Read More ...

Strength behaviour of M25 and M45 concrete incorporating accelerators and stone waste

Accelerators are used to accelerate the setting and development of concrete at early age, and also speed up the construction work for early removal of formwork. Due to depletion of natural resources, and emission of carbon dioxide during Read More ...

Durability of Concrete made with Marble Dust as partial replacement of Cement subjected to Sulphate attack

This experimental study presents the feasibility of the production of more durable concrete with marble dust as partial replacement of cement by 5%, 10%, 15% and 20% by weight. Standard concrete cube specimens of size Read More ...

Effect of Aggregate-Cement Ratio on Engineering Properties of Pervious Concrete

Pervious concrete is a composite type of material containing coarse aggregate, little or no fine aggregate, cement and water. In pervious concrete, carefully controlled amount of water and cementitious materials are used to Read More ...

Recent Advances in - Self-Compacting Concrete

In line of advanced concrete technology and research self-compacting concrete (SCC) contribute an innovative role for the development and its implementations worldwide. SCC, also known as self-leveling concrete Read More ...

Life-Cycle Management of Concrete Structures

A concrete structure is required to maintain its functions and performance during its design service life. However, serious damages have been sometimes found, which may be caused by physical and chemical actions. Read More ...

Green, Sustainable Construction: Solutions for Affordable Housing

Concrete is the second most consumed material in the world after water and it is used most widely in the construction industry due to its high compressive strength and other properties.[1] Therefore, the basis of Read More ...

Aesthetical Integration in High Performance Concrete for Infra Construction

Concrete, the wonder material that has shaped our surroundings, was invented in the mid-18th century, and continues to be the most widely used construction material. Concrete came to architects and designers as a boon Read More ...

Comparative Study of concrete mix design using IS and ACI methods with and without super-plasticizer

Concrete is a composite material consisting of cement, water, and aggregates. These ingredients can be mixed in different ratios to attain desired strengths. Though rough mix ratios for different strengths Read More ...

Non destructive testing for determining the strength of concrete

Civil engineering infrastructures are designed to operate for long periods of time, such as 50 to 100 years. However, several unpredictable and uncontrollable factors reduce their expected performance and life Read More ...

An Experimental investigation on utilizations of Marble Dust as partial replacement of Cement in Concrete

Marble dust is an industrial by-product obtained during sawing, shaping, and polishing of marble and causes a serious problem to the environment. Research indicate that the effect of mixing marble dust on the Read More ...

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture

Lifting & Specialized Transport

Lifting & Specialized Transport

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week