Seismic Retrofitting of RC Beam-Column Connections

Prof. Minakshi Vaghani, Assistant Professor, Civil Engineering Department, SCET, Surat
Designing beam–column joints is considered to be a complex and challenging task for structural engineers, and careful design of joints in RC frame structures is crucial to the safety of the structure. Although the size of the joint is controlled by the size of the frame members, joints are subjected to a different set of loads from those used in designing beams and columns. As a result, it is necessary to pay special attention to the detailing of reinforcement within a joint region. [36] It has been identified that the deficiencies of joints are mainly caused due to inadequate design to resist shear forces (horizontal and vertical) and consequently by inadequate transverse and vertical shear reinforcement and of course due to insufficient anchorage capacity in the joint. Therefore, inadequate transverse reinforcement and insufficient anchorage in the joint are two major problems of joints designed as per non-seismic guidelines [2]. These problems have been highlighted, in recent past, by the damages observed in devastating earthquakes in different countries. The two major failure modes for the failure at joints are (a) joint shear failure (Fig. 2) and (b) end anchorage failure

RC beam-column connections Joint Shear Failure
Figure 1: Terminology of RC beam-column connections
Source: Jaehong Kim et. al. 2009 [11]
Figure 2: Joint Shear Failure
Source: A. Sharma et al. (2011) [1]

In this study, a conventional four-storey RC school building (Fig. 3) is considered for analysis, design and detailing of exterior joint. Different failure modes are expected in beam-column joints depending on the type of joint (exterior or interior) and the adopted structural details. Due to sudden discontinuity of the geometry, exterior joints are found to be more vulnerable to seismic loading than the interior one because it demands to explore additional parameters such as bond-slip of reinforcement [Pampanin et al. (2003)]. Hence, in the present study, exterior beam-column joint has been chosen for investigating the performance under seismic type loading.

Graphical User Interface of STAAD
Figure 3: General Arrangement of the Building Frame Considered for the Study Figure 4: Graphical User Interface of STAAD.Pro

Characteristic compressive strength of concrete and tensile strength of steel used in the specimen have been taken as 30 MPa and 415 MPa, respectively. The specimen has the following general and cross-sectional dimensions: height of column is 3200 mm having cross-sections of (425 x 425) mm and length of beam is 2500 mm with beam size (300 x 525) mm. For casting the specimen, weight ratio of cement: sand: coarse aggregate was adopted as 1 (cement): 2.25 (fine aggregate): 2.35 (coarse aggregate-60% 10 mm size, 40% 20 mm size): 0.5 (w/c). Ordinary Portland Cement (OPC) with 28 days minimum compressive strength of 53 MPa is to be used.

Design of specimen using STAAD
Figure 5: Design of specimen using STAAD.Pro

The geometry of the components (top and bottom portion of column and beam length from joint face) is chosen to match the bending moment distribution at the joint for which it is designed. Seismic analysis (Response Spectrum Analysis) of the framed structure (Fig. 3) has been performed using STAAD.Pro to obtain the design forces. Design assumptions are mentioned in Table 1. The following provides a broad overview of the basic modelling, analysis, and design processes using STAAD.Pro.

Retrofitting of RC-Beam Column

The results obtained from the analysis of a 3 - bay four-storey RC building under the load combinations are used to design the specimen (Fig. 4). Finally, as shown in Fig. 5, the geometry of the components (top and bottom portion of column and beam length from joint face) is chosen to match the bending moment distribution at the joint for which it was designed.

Reinforcement Details of Specimen
Figure 6: Reinforcement Details of Specimen

Graphical User Interface of ATENA 3D Pre-Processor
Figure 7: Graphical User Interface of ATENA 3D Pre-Processor

In a numerical investigation, it is utmost important to provide the material properties as realistic as possible. There are many nonlinear finite element analysis programs of RC structures available. e.g. ATENA, ANSYS, Drain-2DX, MSC.MARC etc. Considering its application, effectiveness, user friendliness, availability, ATENA [1] has been selected for carrying out numerical analysis of the specimen designed for the study.

NBM&CW February 2015

Durability of Concrete made with Marble Dust as partial replacement of Cement subjected to Sulphate attack

This experimental study presents the feasibility of the production of more durable concrete with marble dust as partial replacement of cement by 5%, 10%, 15% and 20% by weight. Standard concrete cube specimens of size Read More ...

Effect of Aggregate-Cement Ratio on Engineering Properties of Pervious Concrete

Pervious concrete is a composite type of material containing coarse aggregate, little or no fine aggregate, cement and water. In pervious concrete, carefully controlled amount of water and cementitious materials are used to Read More ...

Recent Advances in - Self-Compacting Concrete

In line of advanced concrete technology and research self-compacting concrete (SCC) contribute an innovative role for the development and its implementations worldwide. SCC, also known as self-leveling concrete Read More ...

Life-Cycle Management of Concrete Structures

A concrete structure is required to maintain its functions and performance during its design service life. However, serious damages have been sometimes found, which may be caused by physical and chemical actions. Read More ...

Green, Sustainable Construction: Solutions for Affordable Housing

Concrete is the second most consumed material in the world after water and it is used most widely in the construction industry due to its high compressive strength and other properties.[1] Therefore, the basis of Read More ...

Aesthetical Integration in High Performance Concrete for Infra Construction

Concrete, the wonder material that has shaped our surroundings, was invented in the mid-18th century, and continues to be the most widely used construction material. Concrete came to architects and designers as a boon Read More ...

Comparative Study of concrete mix design using IS and ACI methods with and without super-plasticizer

Concrete is a composite material consisting of cement, water, and aggregates. These ingredients can be mixed in different ratios to attain desired strengths. Though rough mix ratios for different strengths Read More ...

Non destructive testing for determining the strength of concrete

Civil engineering infrastructures are designed to operate for long periods of time, such as 50 to 100 years. However, several unpredictable and uncontrollable factors reduce their expected performance and life Read More ...

An Experimental investigation on utilizations of Marble Dust as partial replacement of Cement in Concrete

Marble dust is an industrial by-product obtained during sawing, shaping, and polishing of marble and causes a serious problem to the environment. Research indicate that the effect of mixing marble dust on the Read More ...

Use of Ferrocement for Construction of Mini Check Dams and Diversion Structures

Diversion structures and check dams are constructed for diverting/ storing the water, flowing in shallow rivers/ streams for various purposes. The present practice is to use brick / stone / stone block masonry Read More ...

Sustainable Concrete - An Inevitable Need for Present & Future

Concrete has become, by far, the most widely used construction material in the world. It is surpassed only by water as the most used material on earth. Concrete is perceived and identified as the provider Read More ...

Structural Behaviour of High Performance Fiber Reinforced Concrete Beam Column Joints Under Cyclic Loading

The strength & ductility of structures primarily depend on proper detailing of reinforcement in beam column joints. Under seismic excitations, beam-column joint region is subjected to high horizontal & vertical Read More ...

Translucent Concrete by Using Optical Fibers and Glass Rods

Translucent Concrete
Concrete is traditionally a solid, substantial building material. It needs a makeover. Small buildings are replaced by high-rise buildings and skyscrapers. There arises one of the major problem in deriving natural Read More ...

Practical applications of UHPC & HPC concrete by generative development...

Fiber Reinforced UHPC
Ultra High Performance Concrete (UPHC) is one of the most modern concretes developed during the last decade. It's a material generally characterized by (although not limited to the one) having Read More ...

High Performance Concrete for High-rise Construction

Self Compacting Concrete
Concrete is ubiquitous in our built environment - be it in buildings, roads, bridges, railways, or dams. Global growth in concrete consumption is partly due to the rapid industrialization of developing Read More ...

The Basic Facts on Admixtures for Concrete

Basic Facts on Admixtures
Chemical admixtures are the forth ingredient of the concrete which is inevitable for the modern concretes. The properties of the concrete can be modified either in the plastic or the hardened state as required Read More ...

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture

Lifting & Specialized Transport

Lifting & Specialized Transport

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week