Precast Ferrocement Roofing Units

P.C.Sharma, Retd, Head Material Sciences S.E.R.C (G), Chairman Indian Concrete Instt. Western U.P. Ghaziabad Centre, Chief Editor, New Building Materials & Construction World, New Delhi.

Ferrocement is one of the most suitable construction materials for roofing systems is Precast or cast in situ form. It offers high strength, resistance against ingress/seepage of water, high crack resistance and can offer solution with reduced weight & cost. Casting with or without mould is possible. Many shapes and types of roofing systems have been developed such as trough shaped, segmental shell elements, domes, bamboo F.C. domes, F.C roofing has been used at large scale for housing, schools, hospital buildings, godowns, sentry posts, toilets etc. Single precast roofing units can be used to cover small structures. Roofing system with in between support elements can span larger roofs.

Precast Ferrocement Roofing Units
Photo 1: Making of mould 2.5m x 2.0m

This paper presents a very simple structurally sound F.C. roof which can be precast and used for smaller, medium span structures in rural areas and in urban slum development projects.

The whole process has been presented through five photo figures. The mould for such units can be prepared using a masonry, steel or wood. Masonry mould is the cheapest and easiest to make. When only few units are to be produced then a soil deposit mould with cement plaster lining at top is good enough. Photo 1 shows making a peripheral brick on edge lining and depositing of soil in shape for mould. Soil is compacted well to form the shape if mould and the top surface is plastered using 1:4 cement sand, mortar.

Precast Ferrocement Roofing Units Precast Ferrocement Roofing Units
Photo 2: Mould surface plastered and covered with plastic sheet, reinforcement being fabricated Photo 3: Wire mesh reinforcement being fixed

Photograph 2&3 show a thin plastic sheet laid over the mould and making a skeletal cage reinforcement for the roof. Two layers of hot dip galvanized woven wire mesh of 20 g x ½" x ½" were provided as mesh reinforcement one at top and 2nd at bottom of 5 cage. The casting matrix used, photo Figure 4, was designed to obtain 250 kg/cm2 strength at 28 days and mix used was one part of ordinary Portland cement and 2.5 parts of good quality graded sand. Water-cement ratio was maintained at 0.40 .Pidiproof L.W, a waterproofing chemical from Pidilite was used for improving water resistance and workability of mortar. The size of roof shown was 2.5 m x 2.0 m and the photographs belong to a trg programme organized by author for National Drinking Water Mission (when he was with SERC) at Agratalla for PHED Engineers.

An orbital vibrator developed at SERC (R&G) was used for compacting the unit. The thickness at top was kept as 2.5 cm and near the edge as 3.0 cm. Produced units were used for assembling roofs of 2.5 x 4.0m, Figure 1.

Precast Ferrocement Roofing Units
Figure 1: Top plan for twin unit

The Large areas can be covered by providing precast support beams in between. Larger units can be produced if erection facilities are available. A single unit for a one room low cost house designed as a composite unit having toilet and kitchen, can also be produced. Such a system can reduce the construction time drastically. The only disadvantage is its use as upper most roof or as single story construction.

The cost of such roofs come to almost at par with G.I sheet roof when life cycle cost is considered. Several other type of roofs have also been developed at SERC (R) and extensively used in field. Photo 5 shows a 2.5 m x 1.6 m extensively used for making army sentry posts.

Precast Ferrocement Roofing Units Precast Ferrocement Roofing Units
Photo 4: Casting of F.C. Roofing unit at Agartala (Tripura) Photo 5: Precast F.C. Roof for sentry post for BEG Roorkee. (1976) these units used at large scale by indian army

A do it yourself book on F.C. roof, written by author for international Ferrocement information centre AIT Bangkok, Thailand is in wide circulation since 1978. This publication provides a total package on Trough Shaped F.C. roofing unit up to 6 m span. We can produce such booklets for indian condition.

Large number of training programmes have been conducted by author for IFIC, Unicef, NDWM (Min of R.D Govt. of India), 35 point programme, CAPART etc in which F.C. roofing has been covered.

References:

  • Ferrocement roofing panels for single and multiple use - technical report 7/76, SERC Roorkee.
  • Rainwater harvesting and ferrocement structures for north eastern states in India - report & Trg manual, National Drinking water mission project structural Engg Research Centre Ghaziabad - 1998.
  • Ferrocement roof do it yourself manual - P.C.Sharma V.S. Gopalaratnam International Ferrocement Information Centre (IFIC) A.I.T. Bangkok (Thailand) 1978.

NBMCW May 2011

Click Here
To Know More / Contact The Manufacturer
Please provide your details we will contact you as soon as possible
Please let us know your name.
Invalid Input
Please let us know your Designation.
Invalid Input
Please let us know your City.
Please let us know your State.
Please let us know your Country.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.

Strength behaviour of M25 and M45 concrete incorporating accelerators and stone waste

Accelerators are used to accelerate the setting and development of concrete at early age, and also speed up the construction work for early removal of formwork. Due to depletion of natural resources, and emission of carbon dioxide during Read More ...

Durability of Concrete made with Marble Dust as partial replacement of Cement subjected to Sulphate attack

This experimental study presents the feasibility of the production of more durable concrete with marble dust as partial replacement of cement by 5%, 10%, 15% and 20% by weight. Standard concrete cube specimens of size Read More ...

Effect of Aggregate-Cement Ratio on Engineering Properties of Pervious Concrete

Pervious concrete is a composite type of material containing coarse aggregate, little or no fine aggregate, cement and water. In pervious concrete, carefully controlled amount of water and cementitious materials are used to Read More ...

Recent Advances in - Self-Compacting Concrete

In line of advanced concrete technology and research self-compacting concrete (SCC) contribute an innovative role for the development and its implementations worldwide. SCC, also known as self-leveling concrete Read More ...

Life-Cycle Management of Concrete Structures

A concrete structure is required to maintain its functions and performance during its design service life. However, serious damages have been sometimes found, which may be caused by physical and chemical actions. Read More ...

Green, Sustainable Construction: Solutions for Affordable Housing

Concrete is the second most consumed material in the world after water and it is used most widely in the construction industry due to its high compressive strength and other properties.[1] Therefore, the basis of Read More ...

Aesthetical Integration in High Performance Concrete for Infra Construction

Concrete, the wonder material that has shaped our surroundings, was invented in the mid-18th century, and continues to be the most widely used construction material. Concrete came to architects and designers as a boon Read More ...

Comparative Study of concrete mix design using IS and ACI methods with and without super-plasticizer

Concrete is a composite material consisting of cement, water, and aggregates. These ingredients can be mixed in different ratios to attain desired strengths. Though rough mix ratios for different strengths Read More ...

Non destructive testing for determining the strength of concrete

Civil engineering infrastructures are designed to operate for long periods of time, such as 50 to 100 years. However, several unpredictable and uncontrollable factors reduce their expected performance and life Read More ...

An Experimental investigation on utilizations of Marble Dust as partial replacement of Cement in Concrete

Marble dust is an industrial by-product obtained during sawing, shaping, and polishing of marble and causes a serious problem to the environment. Research indicate that the effect of mixing marble dust on the Read More ...

Use of Ferrocement for Construction of Mini Check Dams and Diversion Structures

Diversion structures and check dams are constructed for diverting/ storing the water, flowing in shallow rivers/ streams for various purposes. The present practice is to use brick / stone / stone block masonry Read More ...

Sustainable Concrete - An Inevitable Need for Present & Future

Concrete has become, by far, the most widely used construction material in the world. It is surpassed only by water as the most used material on earth. Concrete is perceived and identified as the provider Read More ...

Structural Behaviour of High Performance Fiber Reinforced Concrete Beam Column Joints Under Cyclic Loading

The strength & ductility of structures primarily depend on proper detailing of reinforcement in beam column joints. Under seismic excitations, beam-column joint region is subjected to high horizontal & vertical Read More ...

Translucent Concrete by Using Optical Fibers and Glass Rods

Translucent Concrete
Concrete is traditionally a solid, substantial building material. It needs a makeover. Small buildings are replaced by high-rise buildings and skyscrapers. There arises one of the major problem in deriving natural Read More ...

Practical applications of UHPC & HPC concrete by generative development...

Fiber Reinforced UHPC
Ultra High Performance Concrete (UPHC) is one of the most modern concretes developed during the last decade. It's a material generally characterized by (although not limited to the one) having Read More ...

High Performance Concrete for High-rise Construction

Self Compacting Concrete
Concrete is ubiquitous in our built environment - be it in buildings, roads, bridges, railways, or dams. Global growth in concrete consumption is partly due to the rapid industrialization of developing Read More ...
NBM&CW

New Building Material & Construction World

New Building Material & Construction World
MGS Architecture

Modern Green Structures & Architecture

Modern Green Structures & Architecture
L&ST

Lifting & Specialized Transport

Lifting & Specialized Transport
II&TW

Indian Infrastructure & Tenders Week

Indian Infrastructure & Tenders Week