Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method


Ir. H.R. Schipper; Delft University of Technology, The Netherlands;
Dr. Ing. S. Grünewald; Delft University of Technology;
P. Eigenraam, MSc; Delft University of Technology;
P. Raghunath, MSc; VS-A, France;
M.A.D. Kok, MSc; Delft University of Technology.

Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive mould surfaces per single element. The flexible mould is fully reusable and the benefits of applying self-compacting concrete are utilised.The flexible mould process work as follows: Thin concrete panels are cast in a horizontally positioned flexible mould, using a self-levelling concrete. After a certain initial hardening, the mould is deformed and the concrete is allowed to harden further. The knowledge about rheological characteristics is essential during casting and to find the suitable moment for the mould to be deformed. The behaviour of the concrete in the plastic stage is important: A) to allow the concrete to follow the deformation of the flexible mould, B) to counteract its movement under a slope and C) to prevent cracking in an early phase. After the flexible mould has reached its final position, the concrete develops its strength and can be demoulded in a short production-cycle; aesthetically attractive elements of different and complex geometries can be produced with the same reusable mould.

Introduction

This paper discusses a very recent innovative technology that is in the focus of architects, inspiring and enabling them to realize new and complex shapes: the flexible mould system. Although architecture with curved geometry, found for example in domes, vaults and shell structures, has been appreciated throughout the centuries because of their inspiring and appealing shapes and structural benefits, in the last decades of the previous century they have become more and more rare. It seems that double-curved structures in concrete, as for example seen in the famous shells built by Torroja, Isler and Nervi, slowly became economically unfeasible (ref. 1), partly as a result of the increased labour and formwork costs, related to the complex shape, and partly because of the upcoming trend to precast concrete structures. Interestingly enough, three parallel developments have recently refreshed the interest for complex and double-curved geometry again: 1) recent CAD paradigms offer powerful modelling tools for parametric and complex-shaped 3D-modelling, 2) rapidly improving computational power of engineering tools enable the structural analysis of such structures, 3) these technological boosts enable and inspire architects and structural designers to apply these shapes in real buildings and structures, to realize shapes that are beautiful and functional at the same time (ref. 2). One problem, however, is not solved for buildings and structures in concrete: how to reduce the formwork costs, that have remained extremely high as a result of the complex shapes with limited repetition?

Timber Formwork
Figure 1: Left: an example of timber formwork for double-curved bridge parts for the Verlengde Waalbrug Nijmegen, The Netherlands (Architectenbureau Zwarts & Jansma, formwork by Verhoeven Timmerfabriek), Right: concrete cladding detail of Louis Vuitton Fondation pour la Création, Paris (Frank Gehry Architects)

Concrete has always been a material that was very suitable for this type of architecture, but in the last decade it has even become 'cool' again. Two recent examples of (formwork for) buildings and bridges in concrete can be found in Figure 1. The shown structures use the state of the art regarding present formwork technology: Timber, steel, or plastics to construct the formwork are applied, in many cases CNC-milled. For many free-form structures, the available budget is above average: it is accepted that for the more complex and appealing shape, a certain price needs to be paid. Free-form design simply results in complex shapes with very limited repetitive elements, as can be easily observed analysing Figure 1. Although modern technology such as CNC-milling and perhaps in the near future also 3D-printing may offer accurate solutions with limited labour costs, these technologies are relatively slow for large projects, material- and time-consuming and thus expensive as well. The potential market is growing: free-form architecture is without doubt upcoming. Present formwork technology however, unfortunately, is not yet equipped for this large variation in forms. In this paper, an innovative new formwork method will be presented: the flexible mould. It was developed from idea to feasible and operating method during the PhD research of the first author at Delft University of Technology, supported by both practical and theoretical work of the other authors.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Brimax AAC: An Indian Lighthouse Project from HESS AAC SYSTEMS, Netherlands
Brimax AAC Products LLP contracted Hess AAC Systems to supply a new AAC plant in Vadodara, India, with a capacity of 680 cbm/day (expandable up to 900 cbm/day with reinforcement for panel production). This order strengthens Hess´ position as

Read more ...

Vollert India Expands Production Capacity to Cater to Infra Development Sector
Vollert India, based in Sikandrabad, near Greater Noida (UP) since 2017, is strengthening its commitment to India; it is now expanding its production capacity of precast machinery and components to meet the greater demand from India’s fast

Read more ...

Elematic Precast Technology Solutions for Building, Industrial and Infra segments
Elematic offers a comprehensive range of precast technology solutions for the Building, Industrial and Infra segments. Elematic precast technology enables clients to automate the production of walls, slabs, columns, beams, and stairs, providing an efficient

Read more ...

Advanced Concrete Curing Systems from Kraft Curing
Kraft Curing Systems GmbH is offering advanced concrete curing systems that optimize the hardening process of concrete. Kraft Curing’s Advanced Concrete Curing System provides numerous solutions, from vapor-based (steam) systems mainly for the precast

Read more ...

Why Automating Production is the Solution
Automating the production processes will lead to reduced wastage, fewer errors, more precision, greater safety, and higher quality of the end-products, and in a shorter period of time. First, we need to understand where we stand today as regards industrialisation

Read more ...

Elematic India confident of the future of Precast Business
Elematic India sees growing demand for its precast plants in India due to the growth in precast construction across segments. What gives the company an edge is its ability to support the customer through the entire value chain. Says Sridhar Rao, Sales

Read more ...

F.B.I. Tasbud Partners With Progress Group
Progress Group is helping companies like Tasbud stay ahead in a changing market with automation and software integration. Automated machinery to produce precast elements as well as the reinforcement and the integration of the fitting software are

Read more ...

Mekuba Petro Products - Catering to Mega Precast Concrete Projects
Mekuba Petro Products has a strong presence in the petrochemicals industry since 47 years and has been growing rapidly in the construction chemicals segment over the past decade. An expert in the formulation and production of mould-releasing agents, its

Read more ...

Precast & PEB Construction Opportunities for Entrepreneurs
C. A. Prasad, Director, Metey Engineering & Consultancy and President, PSI, Hyderabad, guides entrepreneurs on the various aspects of Precast and PEB construction business. Quality assurance and timely construction using Precast and PEB produced

Read more ...

Autoclaved Aerated Concrete Blocks
A sunrise segment in India’s building materials industry, the AAC block is finding preference over the red brick and emerging as the future of building construction. Mohit Saboo, Director & CFO BigBloc Construction

Read more ...

A Stellar Modernization of Construction With Precast in NCR, India
What influenced the Stellar Group’s decision to build with precast and invest in a precast plant. The well-known Indian ‘Stellar Group’, which has been successfully working in the construction business for over 25 years, is convinced that precast is the future

Read more ...

Sardinian industry leader invests in automated mould from Progress Group to advance production
Recently, a highly automated mould for the production of pillars from Tecnocom, a company of the Progress Group, has been installed to help industry leader Consultecna stay ahead. Francesco Pireddu explains the decision made in favour of automation although

Read more ...

AHCT’s Smart Solutions for Smart Contractors
Technology companies have developed hardware and software solutions to help manage every aspect of a construction project, no matter how complex or massive the project may be. Harsh Pareek, Regional Sales Director, India and SAARC, Trimble Solutions

Read more ...

Echo Precast Engineering Helps Modernize Pruksa’s Precast Plants
Thailand’s real estate developer Pruksa, a leader in the building sector, modernizes its building solutions with automated hollow core production plant equipped with machinery from Echo Precast Engineering, a company of the PROGRESS GROUP. Real estate developer Pruksa

Read more ...

Dongyue Machinery Group gearing up to meet rising demand for AAC Bricks in India
Dongyue Machinery Group is offering Autoclaves Aerated Concrete (AAC) blocks, brick blocks, hollow blocks, curb stones, color blocks etc. AAC Blocks, which are lightweight concrete blocks, use less cement compared to traditional cement bricks, and are therefore eco-friendly

Read more ...

B.E. Billimoria Changing the Face of India
BE Billimoria & Company is one of India’s leading firms of civil engineering construction contractors. Ranging from commercial, residential spaces to some of the most iconic buildings in the country, like the 316-meter Namaste Tower, are among their project list

Read more ...

Advanced Concrete Curing Systems from Kraft Curing Systems GmbH
Kraft Curing Systems GmbH is offering advanced concrete curing systems that optimize the hardening process of concrete. Kraft provide numerous solutions, from vapor-based (steam) systems mainly for the precast industry, to heating/air circulation systems

Read more ...

LARCO partners with ECHO Precast to set up production site for prefab elements
The production site of LARCO PREFAB S.A. in Welkenraedt, Belgium opened in 2018 and has grown consistently over the years. LARCO produces a range of prefabricated concrete elements such as hollow core slabs, columns, wall panels, soccles

Read more ...

Special prefabricated elements specialist Klaus relies on fully individualised automation solutions
Klaus Hoch- und Tiefbau GmbH is upgrading its machines in the precast concrete plant with several automated systems from progress Maschinen & Automation and Tecnocom - companies of the Progress Group. With the individualised reinforcement machines

Read more ...

Prefab Housing
Civil Construction in India has not been as much industrialized as it has been in the West. Presently, it shares barely 1-2% of the real estate market, though as per a recent study, it is expected to grow @8.5% in the decade of 2016-2026

Read more ...