Ecofriendly Paver Block

Ecofriendly Paver Block

In the past few decades, the rapid process of industrialization and urbanization has increased the generation of waste material at huge rates and landfills are filling up faster than the exploration of new sites. Disposal of industrial waste is one of the serious problems faced worldwide. There is now a significant interest to solve the environmental problem caused by industrial waste and other similar materials by adding such material in manufacture of concrete. The use of paver block technique has been introduced in construction a decade ago, for specific purpose namely footpath, parking area etc. but now being adopted extensively for different units where the conventional concrete of pavement using bituminous mix or cement concrete technique is not feasible or desirable. This study looked at the feasibility of dry textile sludge and steel slag inclusion as partial cement and coarse aggregates replacement system. Properties of concrete replacing dry textile sludge as partial substitution around of 2.5% and 5.0% were investigated. Also the concrete replacing steel slag as partial substitution for CA amounts of 10, 20, 30, and 40% were investigated. The waste material was obtained from steel and textile industry. The results obtained clearly show that steel slag and textile sludge enhance the comparative strength properties of the final concrete product. The research indicates that waste steel slag can effectively be used as CA replace (up to 20%) and also waste dry text tile sludge can effectively be used as cement replacement (up to 2.5%) for substantial change in strength.
Dr. S. P. Ahirrao, Ph.D., Associate Professor Civil Department SIEM Nasik.

Introduction
Disposal of waste is one of the serious problems faced by our country. This may be steel industry textile, plastic industry, etc. Disposal of such waste may cause harmful effect on health of human being. The sludge disposal like composting, open dumping, land filling has some drawback like decreasing in productivity of land, contamination of underground water requires large area for storage and high cost of disposal

Ecofriendly Paver Block
Textiles sector is one of the most polluting sectors in India. There are 240 dyeing industries which produces about 80 million tons of textile sludge as a byproduct [5]. Due to its chemical and minerals contents, these wastes are found to be hazardous in the view of environmental consideration. Unsafe disposal of such waste may cause harmful effect on the environment and human being. Textile sludge is the combination of waste water from various stages of production: Fibers preparation, thread, webbing, dyeing and finishing. The textile sludge has a high calcium and magnesium content.

At the same time the problem of steel slag utilization is not confined to India alone but is being experienced all over the world. Steel slag is a byproduct generated during the steel manufacturing process [6]. Disposal of such waste is very important as it may cause harmful effect to human being. Solid waste management should be given more importance for the safe disposal of such waste. Concrete plays an important role in the infrastructure development. Almost 70% of the volume of the concept is composed of aggregates. To meet the world wide demands of concrete in the future, it is becoming a challenging task to find suitable alternate to natural aggregate for making concrete. Availability of aggregates is getting depleted and also it becomes costly, therefore the partial replacement of natural aggregates by the industrials waste has been continuously emphasized during recent year [1].

Concrete paving block has been extensively used in many countries as a specialized problems solving technique for providing pavement in areas where conventional types of construction are less durable due to many operational and environmental constraint. This technology has been introduced in India in construction a decade ago, for specific requirement namely footpaths, parking areas etc. But now being adopted extensively where the conventional construction of pavement using, bituminous mix or cement concrete technique are not feasible or desirable. Concrete power blocks were first introduced in Holland in fifties [2].

Paver blocks are rectangular in shape and had more or less the same size as the bricks. During the past five decades the block shape has steadily evolved from non-interlocking to partially interlocking to fully interlocking to multiple interlocking shapes. In recent years there has been an increasing worldwide demand of concrete paving blocks for the footpath, roads and airfields which has led to a local depletion of aggregates.

Raghuntahan et al. (2010) have conducted a study on strength of concrete with influent treatment plant sludge from dyeing industries which will not be affecting the strength of concrete [4]. Praveen et al.; (2013) have conducted a study on steel slag as an ingredient of concrete [3]. Partial replacement of CA with steel slag gives adequate result of strength. Many researchers used these waste as partial replacement as concrete ingredient separately.

So there is scope to use steel slag as CA and dry textile sludge as partial replacement of cement in the production of paver blocks. Thus replacing partially the natural aggregate in concrete with steel slag and cement with dry textile sludge would lead to considerable environmental benefit and would be economical.

Experimental Work
The main objective of the experimental program was to obtain the best replacement level of the both steel slag and textile slag in coarse aggregates and cement without affecting the strength properties like c/s and abrasion resistance of paver block. The experimental work was carried out on M30 grade concrete. Paver block to find the effect of steel slag and textile sludge on the various mechanical properties. The concrete mix was designed following the guideline given in IS 10262:2009. Ordinary Portland cement 53 having Sp. gravity 3.15 was used. River sand having a Sp. gravity 2.71 and FM of 3.20 was used as FA. The CA was 20mm and down well graded black basalt rock having Sp.GR of 2.83. The addition of steel slag to concrete was for replacing CA where as that of textile sludge was for replacing cement. M.30 concrete had cement sand and CA in the ratio 1:2.11:2.69 respectively. The water to cement ratio was 0.45. The assumed quality control was good with 5% result falling below the prescribed limit in the code. According to IS 10262 the standard deviation for very good and good quality control is 3.6 and 4.6. However according to IS 456:2000. The assumed standard deviation for M30 mix design for controlled quality for addition of water regular checking of material aggregates grading and moisture contained and periodical checking of workability and strength of concrete mix in mechanical mixer is 5.0. The experimental work includes testing mechanical prosperities such as compressive strength and abrasion resistance. Concrete paver blocks were cast and tested for compressive strength and abrasion resistance.

Almost all specimens were water cured for up to 28 days before testing. The workability was measured by slump test. Table 1 gives the details of various mixes prepared by replacing either CA or cement. The water to cement ratio in all the cases was maintained at 0.45.

Table -1:- Details of concrete prepared by replacing aggregate by steel slag and cement by dry textile sludge
Sr. No. Designation Details of Replacement Made Ratio of
C:TS:S:SS:CA
1 TS 0 Conventional M30 concrete 1:0:2.11:0:2.69
2 TS1 2.5% Cement replacement by textile sludge 1:0.026:2.16:0:2.75
3 TS 2 5% Cement replacement by textile sludge 1:0.055:2.22:0:2.83
4 SS 1 10% CA replacement by steel slag 1:0:2.11:0.25:2.42
5 SS 2 20% CA replacement by steel slag 1:0:2.11:0.54:2.15
6 SS 3 30% CA replacement by steel slag 1:0:2.11:0.81:1.88
7 SS 4 40% CA replacement by steel slag 1:0:2.11:1.07:1.62
8 TSSS-1 2.5% Cement replaced by TS & 20% CA by SS 1:0.026:2.16:0.55:2.20
9 TSSS-2 5% Cement replaced by TS & 20% CA by SS 1:0.053:2.22:0.057:2.26
C=Cement, TS= Textile Slag, S=Sand, SS=Steel slag, CA= Coarse Aggregate

Result and Discursion
Table 2 compare the water absorption compressive strength and abrasion resistance of paver blocks containing steel slag and textile slag with those of the plain cement concrete paver block. The compressive strength comparison shows that in some cases the paver block meets the design strength despite, the addition of waste steel slag and textile sludge. The variation in water absorption and abrasion resistance is typical for an experiment of this kind. These two specimen namely The specimen with 20% steel slag (SS2) and the specimen with 2.5% textile slag 20% steel slag (TSSS1) show the best strength among the specimen containing Industrial waste. The reason for achieving the peak best strength abrasion resistance could be in the filling of wades in CA by steel slag and FA by textile sludge.

Comparative result for various M30 Grade concrete

The water absorption gradually increases as the % of replacement of steel slag. Increasing water absorption may be due to the cement mortar adhered to the surface of aggregate which absorb more water. As per IS 15658:2006 the water absorption is within permissible limit hence steel slag inclusion does not cause excessive water absorption. The absorption resistance is required to resist the wearing surface of paver block. More is the abrasion wear poor is the concrete paver block. As steel slag has higher Sp. gravity and lower impact value i.e. strong exceptionally tough the abrasion resistance is more & abrasive wear is low.

Comparative result for various M30 Grade concreteGraph 1: Comparative study of different mixes

Conclusion
Incorporating 2.5% waste textile in place of cement & 20% waste steel slag in place of aggregate in concrete of paver block give acceptable mechanical properties such as compressive strength, abrasion resistance and water absorption. If this waste is available locally; it can be an alternative to replacing cement and finer particle of coarse aggregate in concrete paver block.

Ecofriendly Paver Block

Reference
  1. Jaykumar P.T. et al. “Experimental investigation on paver block using steel slag as a partial replacement of aggregates and sludge as partial replacement of cement” International journal of science and research (IJSR).
  2. Koli Nishikant et al. “manufacturing of concrete paving block by using waste glass materials.” International journal of scientific and research (2010) publication vol-6.
  3. Praveen Mathew et al “steel slag ingredient for concrete pavement” International journal of innovative research in science engineering and technology(IJIRSET) vol. 2
  4. Raghu Nathan et al ,”study on strength of concrete with ETP sludge from dyeing industry” International journal of civil and structural engineering.(IJCSE) vol.1
  5. Sreedevi et al “Experimental investigation on the use of textile sludge in concrete” International journal of advance in engineering and technology (IJAET) Vol. 8.
  6. V.Subhathradevi and B.K. Granvel “Properties of concrete manufactured using steel slag” Science Direct.
  7. Recommended guidelines for concrete mix design IS 10262:2009.Bureau of Indian Standard New Delhi.
  8. Plane and R/F concrete IS 456:2000 Bureau of Indian Standard New Delhi.
Dr. S P Ahirrao holds a BE from Mysore University. ME in Building Science & Technology from North Maharashtra University, Jalgaon, Ph.D. from North Maharashtra University, Jalgaon. He was head of civil engineering dept. SSVPS Polytechnic Dhule, Maharashtra He is Associate Professor at Sandip Instutie of Engineering & Management

Nasik Maharashtra He is Life member of ISTE & IEI. He has Published Technical and Research papers at National and international level of Journals and seminars.
3DXB Group Sets Guinness World Record for Largest 3D-Printed Villa in Dubai

3DXB Group Sets Guinness World Record for Largest 3D-Printed Villa in Dubai

3DXB Group, a leading innovator in 3D printing solutions for the construction industry, unveiled its achievement in making the world’s largest 3D-printed villa in Dubai. This groundbreaking project signifies a pivotal moment in the UAE

Read more ...

Rapidcast Boundary Walls: Best Quality Concrete Precast Textured Walls

Rapidcast Boundary Walls: Best Quality Concrete Precast Textured Walls

Rapidcast LLP brings to you for the first time in India the best quality concrete precast elements such as RCC precast compound walls and RRC precast stormwater UDrains. The new generation Rapidcast boundary wall/fence is a high quality precast

Read more ...

Elematic's Large Precast Concrete Plant for My Home GRAVA Project

Elematic's Large Precast Concrete Plant for My Home GRAVA Project

Hyderabad is witnessing the construction of Asia's tallest towers with a planned built-up area totalling 3.7 million sqm. The two 180-meter towers, each comprising 43 storeys, will be accompanied by six more similar towers. With each tower

Read more ...

Benefits of Shear Keyed Surfaces in Precast Building

Benefits of Shear Keyed Surfaces in Precast Building

Depending on the finish of the concrete surface, different coefficients are assigned by international codes in the calculation of shear resistance. The American Concrete Institute Code ACI318, Nov.19, states the following: Chapter 16.2.1.1 – Transfer of forces by

Read more ...

Revolutionizing Precast Industry with Advanced Tracking of Precast Concrete Elements

Revolutionizing Precast Industry with Advanced Tracking of Precast Concrete Elements

The precast concrete industry is undergoing a transformative change with innovative software solutions that offer enhanced tracking of precast concrete elements. One of these pioneering software solutions is StruSoft’s Impact Precast, which aims

Read more ...

Emerging Trends & Growth of the Prefab Industry

Emerging Trends & Growth of the Prefab Industry

Prefabricated technologies are becoming increasingly popular in the construction industry, particularly for large-scale construction. As prefabricated structures continue to evolve and improve, they are being used to construct warehouses, factories

Read more ...

Precast RCC Structures versus Pre-Engineered Steel Structures

Precast RCC Structures versus Pre-Engineered Steel Structures

A comparative study on Industrial Building Adopting Structural Frames as Precast RCC and Structural Steel Frames with Prestressed Precast Hollow Core Slabs as Flooring Slabs, presented by C. A. Prasad, Director, METEY Engineering Consultancy, Hyderabad

Read more ...

My Home Mega Project Shows Potential of Precast Construction Technology in India

My Home Mega Project Shows Potential of Precast Construction Technology in India

Storey by storey, Asia’s tallest precast towers with a total planned built-up area of 3.7 million sqm are rising towards the sky in Hyderabad. These two 180-meter towers of 43-stories each will be followed by six more similar towers. With each tower

Read more ...

Mekuba: A Leader in Mould Releasing Agents for Concrete

Mekuba: A Leader in Mould Releasing Agents for Concrete

With over 47 years of experience in the petrochemicals industry, and an expert in the formulation and production of mould-releasing agents, Mekuba Petro Products is growing rapidly in the construction chemicals segment with a daily production

Read more ...

Dextra Groutec Coupler - A Unique Solution for Reliable Joints in Precast

Dextra Groutec Coupler - A Unique Solution for Reliable Joints in Precast

Dextra has added yet another customer-centric, innovative, and custom engineered product - the Groutec Coupler - an efficient product that has been qualified and tested successfully on several major infrastructure projects in the recent past. With the

Read more ...

India an Important Market for TOPWERK

India an Important Market for TOPWERK

Sachin Shetty, India Head – Operation & Sales, and Rajesh Jha, India Head - Sales & Market Development, TOPWERK INDIA, discuss the potential of precast concrete construction in India, localization of non-critical components to bring down cost, and the possibilities of digitalization

Read more ...

Vollert: Building A Stronger India with Precast

Vollert: Building A Stronger India with Precast

Vollert India has recently expanded its production capacity in Sikandrabad (UP) India. As a global leader in precast concrete components, systems, and machine solutions, Vollert’s investment in India indicates a growing interest among German companies

Read more ...

Precast India Connector - Helping Precasters Overcome Cost & Time Overruns

Precast India Connector - Helping Precasters Overcome Cost & Time Overruns

Precast India Connections, a new entity of Precast India Infrastructures, has innovated and patented a method of achieving a Dowel-Sleeve connection that functions even in the horizontal direction. Kapilesh Bhate, MD, Precast India Connections, shares

Read more ...

Prensoland Modern Precast Floors Appearance of the iHCS

Prensoland Modern Precast Floors Appearance of the iHCS

Pre-stressed concrete hollow core slabs used for building floors are unidirectional members; they are laid one next to the other until the complete carpet area is covered. In the presence of lateral loads like wind, or due to seismic episodes, they behave

Read more ...

Vollert India Expands Production Capacity

Vollert India Expands Production Capacity

The expansion of the Vollert plant in India marks an important milestone in the company’s commitment to provide high-quality products to customers. With the increased production capacity, the company aims to expand its market share and strengthen

Read more ...

Brimax AAC: An Indian Lighthouse Project from HESS AAC SYSTEMS, Netherlands

Brimax AAC: An Indian Lighthouse Project from HESS AAC SYSTEMS, Netherlands

Brimax AAC Products LLP contracted Hess AAC Systems to supply a new AAC plant in Vadodara, India, with a capacity of 680 cbm/day (expandable up to 900 cbm/day with reinforcement for panel production). This order strengthens Hess´ position as

Read more ...

Vollert India Expands Production Capacity to Cater to Infra Development Sector

Vollert India Expands Production Capacity to Cater to Infra Development Sector

Vollert India, based in Sikandrabad, near Greater Noida (UP) since 2017, is strengthening its commitment to India; it is now expanding its production capacity of precast machinery and components to meet the greater demand from India’s fast

Read more ...

Elematic Precast Technology Solutions for Building, Industrial and Infra segments

Elematic Precast Technology Solutions for Building, Industrial and Infra segments

Elematic offers a comprehensive range of precast technology solutions for the Building, Industrial and Infra segments. Elematic precast technology enables clients to automate the production of walls, slabs, columns, beams, and stairs, providing an efficient

Read more ...

Advanced Concrete Curing Systems from Kraft Curing

Advanced Concrete Curing Systems from Kraft Curing

Kraft Curing Systems GmbH is offering advanced concrete curing systems that optimize the hardening process of concrete. Kraft Curing’s Advanced Concrete Curing System provides numerous solutions, from vapor-based (steam) systems mainly for the precast

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.