Ishita Manjrekar, and Sourabh Manjrekar, Sunanda Speciality Coatings Pvt. Ltd. Mumbai

Introduction: Most of today's concrete construction relies on the composite interaction of concrete and steel, which is aided by the near equivalence of their thermal expansion characteristics. The alkaline environment within good quality concrete offers a high degree of protection to the embedded reinforcement against aggressive agents that promote the corrosion of steel. The most significant causes that lead to corrosion of reinforcement steel and corrosion induced damage such as cracking and spalling and consequent reduction in structural capacity are poor quality of concrete, inadequate cover to reinforcement, chlorides in the concrete or a combination of all these.

Reinforcement Corrosion
Figure 1: A ceiling showing delamination and spalling associated with reinforcement corrosion

Corrosion of steel in concrete has two effects1
  • Reduction of the cross sectional area of steel
  • Creation of local discontinuities in the steel surface.
These effects can reduce the tensile capacity of the steel in proportion to the loss of its cross sectional area and may reduce the steel's resistance to fatigue damage. When the steel or the concrete is degraded by corrosion or cracking to a point where the material can no longer support the stress imposed on them the structure fails. The risk of spalling of the concrete due to reinforcement corrosion should be carefully assessed since the falling lumps of concrete will have serious consequences.

Cement is highly alkaline with pH above 11-12. In this environment, steel is passive and a thin but dense protective oxide - gamma iron oxide film is formed on its exposed surface. Moreover the surrounding concrete restricts the ingress of carbon dioxide and chlorides which promote corrosion. The duration of this protection depends on a number of factors including high pH to maintain protective oxide film, the thickness and physical integrity of the cover concrete, and how well the concrete acts as a barrier to the ingress of aggressive species.

The influence of concrete pH, chlorides and the availability of oxygen on the corrosion reaction can be briefly explained as follows:
  • If the pH of the concrete adjacent to the reinforcement is above 10, a protective surface oxide layer forms on the metal surface. The rate of corrosion under these circumstances is insignificant. In Portland cement concrete the pH is maintained at levels of above at least 12.6 due to the presence of significant amounts of calcium hydroxide which is a product of hydration of the cement.
  • The presence of sodium and / or potassium salts can increase the pH further, for example: K2SO4 + Ca(OH)2 → CaSO4 + 2K+ + 2OH-
  • However, the protective surface layer can be broken down by Cl- ions, even at a high pH.
  • Removing hydroxide by the ingress of carbon dioxide can also depassivate the reinforcement:

    Ca(OH)2 → Ca2+ + 2OH-
    CO2 + 2OH- → CO32- + H2O
    Ca2+ + CO32- → CaCO3
  • The pH consequently falls to a level lower than 9 - 10 needed to maintain the protective surface oxide layer on the reinforcement.
  • In concrete where the supply of oxygen is restricted (eg. where the concrete is submerged or buried underground), the passive film may not be maintained. Corrosion can then theoretically occur through the reduction of water to hydrogen. Thankfully the kinetics of this process is extremely slow.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
Dam Rehabilitation With Cutoff Wall for Seepage Control
As storm damage becomes more severe and has occurred more frequently in recent years, addressing the needs to repair essential infrastructure and dam rehabilitation is also becoming more common. However, deep foundation experts and others

Read more ...

JOGANI Reinforcement: Alkali Resistant ARACC Coated Waterproofing Mesh
Jogani Impex is considered an industry leader in providing international grade Alkali Resistant ARACC Coated waterproofing mesh, which enhances the waterproofing systems and solutions in all types of buildings and structures, while saving money

Read more ...

Assess Build Chem’s Deep & Large Basement Waterproofing Solutions
Assess Build Chem, a leading provider of construction chemicals, is ensuring long-term protection of buildings with its innovative waterproofing solutions that include a 5-step waterproofing method for deep and large basements. Sunny Surlaker, Head

Read more ...

Agrani: Waterproofing, Retrofitting, Civil Work & Interior Fit Outs
By adhering to the highest industry standards, Agrani Group has gained a reputation for delivering solutions waterproofing, retrofitting, civil work & interior fit outs that surpass client expectations, avers Ramendra Bahadur Sinha

Read more ...

FAIRMATE's FAIRFLO CRYSTALLINE: Waterproofing Admixture for Concrete
FAIRMATE is catering to the Speciality Construction Chemical Industry by manufacturing a complete range of construction chemicals like FAIRFLO CRYSTALLINE - Waterproofing Admixture for Concrete, along with cost-effective solutions and world-class

Read more ...

Nippon Paint India: Paints, Construction Chemicals & Waterproofing
In line with its global vision, Nippon Paint India is expanding its portfolio beyond the paint and coatings product range; it will now offer products and solutions under the broad categories: Dry mix, Repair and Maintenance, Construction Chemicals, and

Read more ...

Alkali-Aggregate Reaction in Concrete Structures & Preventive Measures
When the alkali of cement reacts with the reactive constituents of aggregates, the reaction is deleterious though very slow, and the distress is exhibited when the volume inside the concrete is increased due to the formation of alkali-silica gel, causing the

Read more ...

Retrofitting for buildings: Enhance structure lifespan & efficiency
Despite understanding the potential of retrofitting and its distinct and far-reaching advantages in making existing buildings green and sustainable, retrofitting continues to be undertaken on a very limited scale; hence, it needs to be promoted and made mandatory

Read more ...

Cause of Distress of an Old Building Through Advanced Analysis
The technical service life of a reinforced concrete building is the time in service when structural safety is unacceptable due to either material degradation or exceeding the load carrying capacity, or both. In which case, the repair strategy may be adopted

Read more ...

Value Engineering with MCI®-2019 Water Repellent for Concrete Repair
True value engineering saves money without reducing service life or affecting the quality of construction or materials. Ideally, it adds value to the project. MCI®-2019 Water Repellent is one such value engineering solution that can extend

Read more ...

Agrani Milestone Use Carbon Fiber Laminates to Strengthen Slab
Ramendra Bahadur Sinha, Managing Director, Agrani Milestone, explains the remedial measures and challenges faced during slab strengthening of a deflected slab at IIT. NBCC India Limited undertook the strengthening of a deflected slab at a G+2 storey IIT building

Read more ...

Waterproofing Challenges & Remedial Measures in High Rise Buildings
High-rise buildings need special attention when it comes to waterproofing as the challenges inherent in them are peculiar in nature. Unfortunately, there is a lack of knowledge on the remedies and products available in the market as water- proofers continue to

Read more ...

Importance of Waterproofing Structures
The longevity of structures depends on how much resistance the building element will offer to water ingress. Water leakage not only reduces the durability but also hampers the serviceability or usability of the structure; hence, a good waterproofing system will

Read more ...

Terrace Waterproofing Solutions for Energy-Efficient Buildings
Terrace waterproofing is particularly important and is considered a priority as the roof is always exposed to harsh climatic conditions and weather changes. Rajeev Gupta, Business Head, ECMAS Construction Chemicals Pvt. Ltd. An effective waterproofing solution

Read more ...

Structural Rehabilitation of Reinforced Concrete Structures
Cement concrete is one of the most important construction materials and is practically basic to present-day developments. It is strong enough mechanically, yet vulnerable to deterioration. It thus gets damaged and even fails. This deterioration may be due to the weathering

Read more ...

Thermax - HDPE-SBS Waterproofing System for Basement Waterproofing
Gradual shift in lifestyle has driven the idea of modern construction towards developing underground spaces and buried structures to bring efficiency in use of space. However, the improved efficiency comes with an increase in challenges like infiltration

Read more ...

Waterproofing in Hilly Areas with Sub-Zero Temperatures
Industry experts Kunjan Popat, General Secretary, Waterproofing Association of India; Ramendra Bahadur Sinha, Managing Director, Agrani Enterprises, and MS Sudish, Director, SIWIN Institute of Waterproofing and Insulation, share the challenges

Read more ...

Dow Sealants for Sustainable Infrastructure
Durability is a key requirement for modern infrastructure projects – highways and roads, bridges, airports and airfields, walkways and plazas, parking structures and stadiums. Miles of concrete must

Read more ...

FAIRMATE FAIRCURE WC - White Pigmented Concrete Curing Aid
Buildings have major environmental impacts over their entire life cycle. Resources such as ground cover, forests, water, and energy are depleted to give way to buildings. Today, India has demonstrated

Read more ...

Repair and Rehabilitation of A Minor Bridge in Shravasti District  (UP), India
Scour is a natural phenomenon caused by the erosive action of flowing stream on alluvial beds. Failure of bridge due to scour at their foundations, which in this case consisted of abutments and pier, one 1.2 dia

Read more ...