Shriram Bapat, Retd.Chief Engineer Civil, NPCIL, Mumbai

Prestressed concrete slab (PT slab) construction has gained wide importance as a state of art technology, due to a number of engineering solutions and economy that it provides. Conventional usage of bright metal sheets as duct material have explicit problems of corrosion, duct opening leading to slurry intrusion and higher short-term losses due to the large values of friction and wobble coefficients. Further, one-end stressing operation may lead in to inefficiency of the prestressing system. The use of HDPE material, as prestressing duct, can eliminate the inherent problems associated with the metal ducts and reduce the prestress losses. Both end stressing using HDPE sheathing is the best combination for PT slabs.

Introduction

Prestressed concrete slabs (PT slabs) are the state of art construction technology and are provided these days for almost all commercial complexes. This concept is also being adopted for some large scale residential complexes. As the concrete quantities as well as reinforcement steel quantities get reduced when this concept is adopted, it is getting popular. Additionally, one gets clear headroom, as the floor beams are eliminated. This paper highlights the cost effectiveness of use of HDPE sheathing compared to bright metal sheathing which is conventionally used in the industry.

Sheathing Material

Three different types of sheathing materials are available in the market and are in general being used for housing the prestressing tendons.
  • Bright Metal Sheathing
  • Lead Coated Metal Sheathing
  • Galvanized Metal Sheathing
All the above sheathings are manufactured as round sheathing and then pressed to get a flat sheath, suitable for PT Slab. In the process of converting round sheath to flat sheath, there are chances of getting non-uniform profile of the flat duct as well as there are chances of opening of joints, which further leads to chances entry of slurry into the sheath while concreting. The flat HDPE duct is ideal in this situation, as the shape will be uniform and absolutely no possibility of leakage of slurry into the duct, while concreting.

Table-1: Comparison of Wobble and Friction Coefficient Values
Type of sheath Wobble coefficient Friction coefficient
Bright Metal 0.0046 0.25
Galvanized  Metal 0.0030 0.20
Lead coated Metal 0.0030 0.18
H.D.P.E. 0.0020 0.17

In addition to the advantages of the HDPE duct as mentioned above, HDPE ducts have lower values for co-efficient of friction and wobble co-efficient, leading to reduced short-term prestress losses during pre-stressing operation. Table-1 gives values of friction and wobble co-efficients for different types of sheathing ducts.

HDPE flat duct was not being manufactured in India till recently. Now, one manufacturer has successfully developed and came forward to manufacture and supply of HDPE flat duct.

Present Study

In view of lower value of friction and wobble coefficients for HDPE duct, when compared with those values for Bright Metal duct, which is commonly used in PT industry, a study was undertaken to work out economy in using HDPE duct. Different column grids, corresponding column sizes, slab thickness and drop slab thickness were considered. Table-2 gives the considered combinations.

Table-2: Combination Considered for the Case Study
Sr No. Grid Size(m) Column Size(mm) Slab Thickness(mm) Drop Size(mm)
1 8 x 8 700 X 700 200 3000 X 3000 X 375
2 9 x 9 700 X 700 200 3000 X 3000 X 375
3 10 x 10 800 X 800 225 3500 X 3500 X 400
4 11 X 11 900 X 900 250 4000 X 4000 X 450
5 12 X 12 900 X 900 265 4000 X 4000 X 475

Five panels have been considered in X-direction and three panels have been considered in Y-direction. Stressing has been done from alternate end in both the direction as one case and in other case, stressing is considered from alternate end in Y-direction and from both ends in X-direction. ADAPT FLOOR PRO 3D (Builder) software of Dr. ALAMI has been used for analytical work.

Table-3: Comparison of H.T. strand requirements using Bright Metal Duct and HDPE Duct
Column Slab Drop Panel COLUMN Both End Stressing Alternate End Stressing
BM HDPE BM HDPE
HTS HTS HTS HTS
Grid Thk. Size Size (Kg/sq.m.) (Kg/sq.m.) (Kg/sq.m.) (Kg/sq.m.)
8X8 200 3X3X0.375 700X700 3.4 3 3.4 3.1
9 200 3X3X0.375 700X700 4 3.64 4 3.81
10 225 3.5X3.5X0.400 800X800 4.4 3.9 4.5 4
11 250 4X4X0.450 900X900 4.6 4.24 4.7 4.3
12 250 4X4X.500 900X900 5.4 5.0 5.6 5.35

Results

On the basis of analytical results, the requirement of H.T. strand per square meter of slab has been worked out. Table-3 gives comparison of H.T. strand requirement using Bright Metal and HDPE flat duct and Table-4 gives percentage saving of H.T. strand when HDPE flat duct is used, in place of Bright Metal Duct.

Table-4: Percentage Saving in H.T. Strand
Column Grid % SAVING
Size Both End Stressing Alternate End Stressing
8X8 11.7 08.0
9X9 09.0 04.8
10X10 11.4 11.0
11X11 07.8 08.5
12X12 07.40 04.50

Conclusion

It can be seen from the Table-4 that there is substantial saving in requirement of H.T. strands when HDPE duct is used, in place of conventionally used Bright Metal duct. The range of saving is 4.50% to 8.5% when conventional alternate end stressing is resorted to. The saving goes up in the range of 7.4% to 11.7%, when both end stressing is resorted to. Additionally, there is marginal saving in requirement of duct length and number of anchorages.

When conventionally used Bright Metal Ducts are provided in PT Slab construction, they get corroded during construction stage itself (particularly in and around Mumbai coastal region). This increases friction and thus the frictional losses also go up. Use of HDPE flat duct will eliminate this problem.

On the basis of study following is recommended:
  • HDPE flat duct shall be used in PT Slab construction.
  • Both end stressing shall be resorted to, in place of conventional method of alternate end stressing.
  • 8 m x 8 m column grid seems to be most economical choice in selecting column grid at planning stage.

Acknowledgment

The author acknowledges the analytical help provided by Shri Umesh Bhujbalrao of M/s.VSIL, Bhopal. Preparation of this paper was possible due to constant pursuance by Shri C.B.Dandekar of M/s.REX Polyextrusion Ltd, Sangli, manufacturers of HDPE flat duct.
Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...

Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

As every one ton of Cement (OPC) produced, emits 0.96 tons of CO2, there is an urgent need to promote blending materials (ex. GGBS &PSC) and screened slag, to achieve lower CO2 emissions, reduce greenhouse gas effect, reduce exploitation

Read more ...

In most of the developing countries, demand for steel for use as a reinforcing material is increasing day by day. However, when steel is in short supply, one can consider bamboo as an alternative material for reinforcement

Read more ...

There is high demand for white cement in countries with hot climates, as more heat is reflected from white concrete surfaces as compared to standard grey concrete. As a value-added product, white cement is becoming

Read more ...

Garry Martin, Director - Major Projects, Low & Bonar Construction Fibres, presents a new examination of the benefits of micro fibres in both the plastic and hardened state of concrete and their contribution to increased sustainability.

Read more ...

An integrated material and structural design strategy of strength through durability is the need of the hour since structures are designed for ductility and structural integrity. Dr. S. B. Hegde, President – Manufacturing

Read more ...

The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.
Click here to subscribe.