Understanding & Preventing Corrosion in RC Structures

Corrosion of concrete is a major issue and many concrete structures on adverse environment have experienced unacceptable losses in terms of serviceability, ultimately requiring replacement, rehabilitation and strengthening of reinforcement.

Pranav Desai, Vice President- R&D, Head -CDIC and
Samidha Pathak, R&D Manager, CDIC, Nuvoco Vistas Corp. Ltd

The durability of concrete is an important parameter for the long service life of structures. Durable concrete is one which is designed properly and produced with good quality control; however, concrete may be vulnerable to adverse conditions such as chemical attack, corrosion, permeability and porosity. The intensity and nature in each of these properties varies considerably based on the environmental conditions.

Corrosion is one of the single most leading causes for deterioration of concrete structures as it compromises the serviceability of structure. In India, the direct cost of corrosion for the construction industry was approximately ₹300 crores in 1985 as per a research report. Corrosion of steel embedded in concrete produces hydrated iron oxide, often known as rust. Corrosion in concrete occurs due to the destruction of the reinforcement by the electrochemical reactions that occur within the environment.

The ingress of chlorides and carbonates from the external agencies lead to corrosion. CO2 and chlorides penetrate concrete and get dissolved in the pore solution to form carbonic acid. This acid reacts with the alkali in the cement to form carbonates and to lower the pH level of the concrete. Once the threshold is reached, the concrete cover is compromised and the pH of the concrete surrounding the rebar allows corrosion. When the alkalinity begins to drop from 12-13 to about a value of 9, the embedded steel becomes de-passivated. In the presence of water and oxygen, corrosion is initiated. Rust formed on the steel expands in volume three to six times that of the original steel. This increase in volume change increases the stresses in the concrete resulting in cracks and de-lamination.

Chloride pitting weakens the steel and the hydrated iron oxide being expansive in nature, builds up internal pressure in concrete structures and causes spalling. Corrosion is accelerated at relative humidity levels ranging between 70 - 80%. A corrosion protection strategy to minimise the repair and maintenance costs is a must. It is therefore advisable that the concrete mix proportions should be used in lieu of design target parameters of concrete.

Preventive Measures
Usually, certain preventive measures are taken to prevent the reinforcement from being corroded. Galvanization, epoxy coating, metal coating and cathodic protection are a few to name. However, reinforcement coatings have proven to have bond issues with concrete due to poor chemical adhesion and techniques like cathodic protection are way expensive. Galvanization is not very effective in RC structures subjected to chloride rich corrosive environment as galvanized coating dissolves very quickly in high chloride concentration. If concrete is pumped a few feet above rebar, the impact of aggregates is liable to damage the epoxy coating. On an average, 40 such defects are created per metre of casting. Corrosion inhibitors do not prevent the ingress of chloride ions or external harmful environmental agencies. The addition of corrosion inhibiting admixtures alone does not ensure prevention of corrosion, since the inhibitors work through formation of passive membrane on the reinforcement surface.

Hence, it is desirable to make concrete denser, so that the ingress of chlorides and carbonates to the reinforcement surface is prevented. Incorporation of supplementary cementitious materials and proper gradation of aggregates can make concrete denser and helps to improve the durability of concrete thereby delaying the onset of corrosion. These materials produce a denser concrete, reduce its permeability, constrain the flow of ions, increase electrical resistivity, and slow down the corrosion current. In order to make the structure corrosion resistant, it is very important to define the exposure condition of the location of structure. Indian Standard classifies the environmental conditions into five exposure zones – mild, moderate, severe, extreme and very extreme. The grade of concrete and mix requirements needs to be selected according to the zonal location of the structure.

Corrosafe by Nuvoco
Nuvoco has developed corrosion resistant concrete under the brand name – Corrosafe. This innovative product is designed with a denser packing at the micro structural level and is admixed with corrosion inhibitors. The dense packing restricts the ingress of external agencies like chlorides and carbonates and the inhibitors will diffuse and form a passive layer, thus coating the reinforcement. This dual mechanism delays the de-passivation of reinforcement by strengthening the passive film. A lower w/b ratio, incorporation of supplementary cementitious materials, well graded particle distribution ensures a corrosion resistant concrete structure. Corrosafe has lower permeability, lower chloride penetration depth, lesser values of chloride diffusion, better resistance to abrasion and very low probabilities of carbonation and chloride attacks.

Nuvoco offers the most durable concrete mix, along with Service Life Prediction Report. Life 365 simulation report governed by Fick’s law of diffusion and Crank Nicolson Finite Difference equation is used for service life prediction. Nuvoco has designed and provided concrete with service life prediction of 125 years.

Life 365 software displaying Chloride ConcentrationFig: Screenshot from Life 365 software displaying Chloride Concentration versus duration required for chloride ions to penetrate the cover

Life 365 software displaying the estimated service life of structureFig: Screenshot from Life 365 software displaying the estimated service life of structure 125.6 years

Service life is a broad concept, which is defined in various terms by various researchers. However, in a nutshell, service life is the time required for the initiation of corrosion and the time required for the corrosion to propagate throughout the entire structure.

Table 1: Durability parameters for concrete compliant to various codes (actual site data tested at third party where Corrosafe was used for concreting)
Sr. No. Durability Parameter Value Codal Compliance
1. Drying Shrinkage (%) 0.011 IS 1199:1999
2. Moisture Movement (%) 0.013 IS 1199:1999
3. Water Permeability (mm) 7.7 DIN 1048 (Pt-5)-1991
4. RCPT (Coulombs) 805 ASTM C1202
5. Chloride Migration Coefficient 0.81*10-12 m2/s NT Build 492
6. Water Absorption (%) 1.6 BS 1881 – (Pt - 122)

Dense micro packing model of concrete achieved with addition of supplementary cementitious materials and consideration of particle size distribution reduces the diffusion co-efficient of concrete. Corrosafe finds applications in wide variety of structures located near the coastal areas, marine structures, sewage treatment plants, retaining walls, sub-structures, jetties, and dolphin structures. Corrosafe allows the concrete cover to remain intact for longer duration. It makes the structure durable and minimises the repair and maintenance cost by increasing the service life of structures. It also eliminates the need of pre-coating the steel surfaces. Thus, with specialized mix design technology, Nuvoco Corrosafe offers remarkable corrosion resistance and durable structures.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...