Sustainability in Indian Cement Industry - Challenges and Avenues

Dr.S.B.Hegde, Udaipur Cement Works Limited, Udaipur, Rajasthan

Sustainability in Indian Cement Industry - Challenges and Avenues

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability.

In 2018-2019, India had an annual cement consumption of 337 million tons, which is expected to increase up to 550 million tons by 2025. The major cement consuming sectors are housing and real estate (65%), infrastructure (25%), and commercial and industrial development (10%). This increase is attributed to various developmental schemes launched by the Government of India, including the Smart City Mission, Housing for All, Bharatmala Pariyojana, Pradhan Mantri Gram Sadak Yojana, Urban Transport Metro Rail Projects, etc.

Aided by suitable government foreign policies, several foreign players such as Lafarge-Holcim, Heidelberg Cement, and Vicat have invested in the country in the recent past. The per-capita consumption of cement in India is 240 kg, which is well below the global consumption of 530 kg (DIPP, 2020). This signifies that there is a huge economic opportunity to cater to the unmet demand in future.

Operational Parameters of Indian Plants
Average “specific heat consumption” and average “specific energy consumption” in the Indian cement industry is 3.1 GJ/tonne of clinker and 80 kWh/tonne of cement, respectively, which is lesser than the global average of 3.5 GJ/tonne of clinker and 91 kWh/tonne of cement, respectively. Despite this, a noteworthy progress by the Indian cement industry is in enhancing energy efficiency, though GHG emissions from the cement sector are still significantly high at 187 million tons of CO2e (in 2015-16).

Challenges and Avenues
This rising demand for cement also associates with it the environment damaging greenhouse gas (GHG) emissions. The cement industry alone is responsible for 8% of the total national emissions. These emissions are a product of electricity usage, combustion of fossil fuel and the calcination of limestone, which accounts for 13%, 31%, and 56%, respectively. The CO2 emission intensity of the Indian cement industry in 2018 was 576 kg CO2/ton of cement produced whereas the global average is 634 kgCO2/ton of cement produced.

As per the International Energy Agency (IEA) and WBCSD, emerging and innovative technologies, namely carbon capture and storage (CCS), renewable energy, have 48% emission reduction potential. Of late, renewable energy is gaining momentum.

Reduction in the clinker to cement ratio has the second-highest emission reduction potential (37%). This is being considered as a high priority now, as this not only reduces direct thermal emissions but also the process emissions, which contribute highly to the overall emissions from the cement industry and cannot be addressed through energy efficiency (EE) measures. There has been some progress in terms of identifying new alternate materials with lower clinker content and which, therefore, hold a bigger responsibility for India in the near future.

Circular Economy Concept - Usage of Alternate Fuels: Alternate fuels and EE have a CO2 reduction potential of 12% and 3%, respectively, which is very less as compared to the other two options. In recent years, the Indian cement industry has started using alternative fuels to further cut down emissions. The amount of alternative fuel used by the cement industry is defined by Thermal Substitution Rate (TSR), which refers to the percentage of alternative fuel used to replace fossil fuels. From the TSR level of 4% in 2016 (it was 0.6% in 2010), the Indian cement industry targets to achieve 25% TSR by 2025 and 30% by 2030.

With the use of circular economy principles (like use of SCMs, utilisation of construction and demolition waste through technologies like Smart Crusher) and design optimisation techniques (like bubble deck/voided concrete slab systems, confined masonry, and use of timber) the demand of cement can be optimised in the upcoming construction activities.

Renewable Energy: On the other hand, regarding the EE lever, most of the energy-efficient technologies are already implemented in the cement industry, leaving very little potential for decarbonisation. Additionally, to realise the leftover potential in EE, various interventions like waste heat recovery (WHR), installation of high energy efficient coolers, grinding systems, and the use of variable frequency drive (VFD) in process fans etc. are being implemented in indicant plants.

On one hand, cement is the most used industrial commodity required for development, but on the other hand it is also responsible for high GHG emissions. Therefore, there is a need to create a balance between the nation’s growth and environment sustainability. Moreover, to achieve climate change mitigation targets, in-line with the Paris Agreement, which attempts to limit the global temperature increase by 2°C at the end of this century, there is an urgent need to explore other opportunities (beyond energy efficiency) to limit GHG emissions from India’s cement industry.

Of late, a lot of research and development has taken place to develop low carbon cement alternatives like LC3, geopolymer binders, belite rich cements, and other novel cement formulations. Out of these options, LC3 and Geopolymer concrete have significant potential for emission reduction and are in the final stages of development in India.

To enable this transition there is a need for all stakeholders to come together and take up activities, including pilots, policy interventions as well as raising the awareness of these options to reduce emissions from the hard-pressed sector.

(The author is a Domain Expert in Cement in International Bodies, Mumbai).
NBM&CW May 2021

No comments yet, Be the first one to comment on this.

×

Terms & Condition

By checking this, you agree with the following:
  1. To accept full responsibility for the comment that you submit.
  2. To use this function only for lawful purposes.
  3. Not to post defamatory, abusive, offensive, racist, sexist, threatening, vulgar, obscene, hateful or otherwise inappropriate comments, or to post comments which will constitute a criminal offense or give rise to civil liability.
  4. Not to post or make available any material which is protected by copyright, trade mark or other proprietary right without the express permission of the owner of the copyright, trade mark or any other proprietary right.
  5. To evaluate for yourself the accuracy of any opinion, advice or other content.
Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

The recent acquisition of BuildTech by Thermax exemplifies a significant trend within the industry towards strategic expansion and enhanced capabilities in construction technologies.

Read more ...

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete has emerged as a new age material for Concrete Construction given its efficacy in increasing the strength and durability of concrete, bringing value additions and greater profitability to the users.

Read more ...

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

The Cement Industry is embarking on a Net Zero pathway, aiming for a 25% reduction in CO2 emissions by 2030 and a full decarbonization by 2050, driven by technological innovations, use of alternative raw materials, and circular economy

Read more ...

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Plastic hinges form at the maximum moment region of reinforced concrete columns. A reasonable estimation of the plastic hinge length is key to successfully modeling the lateral load-drift response and conducting a proper seismic

Read more ...

Properties and Applications of Geopolymer Masonry Blocks

Properties and Applications of Geopolymer Masonry Blocks

Radhakrishna, Professor and Head, Department of Civil Engineering, RV College of Engineering, Affiliated to Visvesvaraya Technological University, Bengaluru. Block masonry is one of the oldest methods of construction. It is composed

Read more ...

Advancing LC3 Cement Technology for Sustainable Construction in India

Advancing LC3 Cement Technology for Sustainable Construction in India

Dr S B Hegde provides a deep, research-driven analysis of LC3 cement, emphasizing its chemistry, process innovations, global applicability, and success stories, and evaluates its technical advantages, performance, cost savings

Read more ...

Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.