Sensitivity Analysis of Cable Profile of Prestressed Concrete Beams

Sensitivity Analysis of Cable Profile of Prestressed Concrete Beams

The cable profiles for post-tensioning of concrete beams are usually designed as parabolic curves based on the eccentricity of the midpoint of the duct to the neutral axis of the beam. The end points and the midpoint of a duct are very important and sensitive. Hence, the sensitivity of these influence points is being studied and the most sensitive point(s) is being found out.

The method of computational analysis (matrix method) using STAAD.Pro has been taken into account to find out the sensitivity. The sensitivity has been observed by repositioning the points by 25mm from the standard cable profile in both directions at a time. The tensile and compressive stresses and deflections are then observed in six different locations of each span of the beam and the sensitivity is calculated. The results of different points are then compared to find out the most sensitive point.

The test has been done for four different beam profiles i.e. single-span, two-span, three-span and five-span beam considering a combination of self-weight, live load and post-tension load. This study provides the knowledge of sensitive points of the cable profile of the post-tensioning of concrete beams so that the care can be taken during construction.

K.K. Pathak, Professor, Department of Civil Engineering, IIT (BHU), Varanasi, Rounak De and Sayak Roy, undergraduate students of Department of Civil Engineering, IIEST, Shibpur.

Introduction
Post-tensioned concrete beam - different loading conditionsFigure 1: Post-tensioned concrete beam profile in different loading conditions
Pre-stressing of concrete can be achieved by two different methods namely pre-tensioning and post-tensioning. Pre-tensioning is useful in precast concrete blocks while for the in-situ cast concrete beams post-tensioning is most effective and easy to achieve. In post-tensioning process the ducts are first laid in the form of the actual deflection pattern of the beam profile and the casting of the beam is done first. After the concrete is matured high yield high tensile steel wires as tendons are then inserted through the ducts and the post-tensioned forces are applied equally through both ends of the ducts. In post-tensioning, the whole section of the beam can be used as most of the total cross-section stays in compression. Post-tensioned beam profile has been shown in Fig.1

As the upward force on the beam due to post-tensioning totally depends upon the cable profile so profiling the duct(s) is a very critical job before casting a post-tensioned concrete beam and has to be done carefully and correctly. Padmarajaiah et. al. (2000) has conducted analyses on flexural strength of fibre reinforced concrete. Pathak and Sehgal (2004) conducted an analysis of a prestressed concrete beam using different cable models. Kasat and Varghese, (2012), studied prestressed concrete beams using finite element analysis. The observation of the research is the response of prestressed concrete beams due to transverse loading conditions. Bhargava et. al. (2016) have conducted analysis of single span prestressed beam using analytical, matrix and FEA method. The aim of the study is compare three most popular methods of structural analysis. The effect of pre-stressing force and eccentricity on different cable profile for a single span beam has been analyzed using ANSYS by Dixit & Khurd (2017). They found out the effect in terms of deflection of different cable profiles used in prestressed concrete. The goal of this study is to determine the most sensitive point(s) of a cable profile in terms of deflection and stress variation through a post-tensioned beam. To achieve the goal, four different beam profiles have been analyzed using computational analysis for a combination of self-weight, live load and post-tensioned load.

Sensitivity
To find out the desired results a different sensitivity analysis has been carried out. Sensitivity analyses of tensile and compressive stresses as well as analysis of deflection of beam profiles have been carried out for different cases through structural analysis software, STAAD.Pro. Sensitivity of a parameter can be defined as the ratio of change of that parameter to the change of some other controlling parameter. Here the sensitivity of stress and deflection has been taken into account which can be given as-

Ss=∆σ / ∆e
Sd=∆δ / ∆e

Where ∆σ and ∆δ are the change in stress and deflection in concrete at different locations and ∆e is the change in eccentricity of a particular influence point.

This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
NBM&CW October 2019
Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry

Challenges in usage of Hydrogen in Cement Industry

With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures

Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.