Self Compacting Concrete for Rafts and Retaining Walls

Self-Compacting Concrete

Raajesh Ladhad, Consultant, Structural Concepts, N.G. Joshi, Concrete Consultant, Siddappa, A. Hasbi, President & CEO, Corniche India Pvt Ltd, Mumbai

Self–compacting concrete can be defined as a category of High Performance Concrete that hasexcellent deformability in the fresh state and high resistance to segregation and can be placed and compacted under its self– weight without applying vibration. This method of placing concrete actually started in Japan in 1998 for the walls of a large LNG tank belonging to Osaka Gas Company, where the requirement was to place concrete amidst congested reinforcement. A number of projects since then have been executed around the world with a variety of application needs and requirements.

Development of Self– Compacting Concrete

For several years, the problem of the durability of concrete structures was a major topic of interest in the concrete industry. To make durable concrete structures, sufficient compaction of concrete by skilled workers is required. However, the gradual reduction in the number of skilled workers in the developed world, led to similar reduction in the quality of construction work. One solution for the achievement of durable concrete structures independent of the quality of construction work is the employment of self-compacting concrete, which can be compacted in every corner of a formwork, purely by means of its own weight and without the need of vibrating compaction. The necessity of this type of concrete was proposed by Okamura in 1986. Studies to develop self-compacting concrete, including fundamental study on the workability of concrete, were carried out by various researchers and today one would find more than thousand technical articles that have been written on this topic.

The use of self–compacting concrete in actual structures has gradually increased. The main reasons for the employment of self-compacting concrete can be summarized as follows:
  • Shortening of construction period
  • To assure compaction in the structure: especially in confined zones where vibrating compaction is difficult.
  • To eliminate noise due to vibration: effective especially in new structures amidst densely populated areas.
That means the current condition of self-compacting concrete is a ‘Special concrete’ rather than a traditional concrete.

A typical application example of self–compacting concrete is the two anchorages of Akashi–Kaikya Bridge opened in April 1998, a suspension bridge with the longest span in the world. The volume of the cast concrete in the two anchorages amounted to 290,000 M3. A new construction system, which makes full use of the performance of self– compacting concrete, was introduced for this. The concrete was mixed at the batching plant beside the site, and was pumped out of the plant. It was transported 200 mts through pipes to the casting site, where the pipes were arranged in rows 3 to 5 mts apart.

The concrete was cast from gate valves located at 5 meter intervals along the pipes. These valves were automatically controlled so that a surface level of the cast concrete could be maintained. In the final analysis, the use of self–compacting concrete shortened the anchorage construction period by 20% from 2.5 to 2 years.

The use of self–compacting concrete in India was actually a matter of academic interest in the initial stages. This was the case owing to the higher initial cost compared to the traditional method of concreting. But as many construction companies repeatedly found themselves in situations of time constraints and placement difficulties, the method of self compacting concrete started flourishing in Indian Sub-continent too.

Inherent Problems in Rafts & Basements

Self-Compacting Concrete
One of the areas of big concern for contractors and consultants is the raft foundation and basement of the structure. The problems are multifold when it comes to those structures that are built in areas where the water table is quite high.

Such structures are plagued by leakage of water into the basements and contractors generally spend sleepless nights in waterproofing them, which sometimes could even prove to be more expensive than the concrete itself.

The possibility of leakages in a structure generally occur due to flaws and cracks that develop in concrete as a result of shrinkage, thermal gradient, construction joints etc in concrete. Though careful design and detailing, material selection is done and exposure conditions are thought of, the water tightness of the structure still depends upon the construction practice, and the skillfulness of the worker at the site. Therefore it is of prior importance that the concrete is made independent of the worker and appropriate quality control measures are maintained. One aspect of making the body of the concrete water tight is to produce High Performance concrete, where certain durability tests are done and the quality of concrete ensured. A little improvement on the HPC is Self–compacting Concrete (SCC).

SCC therefore is a concrete which flows like honey under its own weight and when put into forms of any shape it fills it completely, parllely maintaining its homogeneity. It even goes around reinforcements and needs no vibration for compaction. Its rheology is very different from all other concretes; it has a moderate viscosity and an extremely high cohesion. Sometimes, we come across foundations where the thickness of raft is of the order of 1–4mts and the huge caging (reinforcements) becomes a big challenge to place the concrete and to ensure vibration. In such cases, the best option is to go for a self– compacting concrete, which ensures better compaction without any voids and also eases the placing method, adding to the saving in construction time.

SCC for Rafts & Retaining Walls for Kesar Solitaire

Kesar Solitaire
The Kesar Solitaire is a prestigious project being developed by M/s. Kesar Group, when completed would be a landmark on the Palm Beach Road in Navi Mumbai. This commercial complex is situated just next to the creek and the water table is about 1 meter below the ground. On examining the water, it was found to be highly saline and the chloride content in water was more than 7000 ppm. Another issue at the site was the upcoming monsoons, the basement needed to be completed before the start of the monsoons, which otherwise would have flooded the site. It was therefore decided to go for an M 40 grade SCC for the triple basement structure, which was 10 meters below the ground level.

The SCC mix was designed with “Corniche SF” brand Silica Fume to take care of the chloride ion permeability of the structure due to the saline water table. An RCPT value of less than 1000 coulombs according to ASTM C 1202 and water permeability of max 50 mm according to DIN 1048 was specified, so as to ensure the durability of the raft concrete. The mix actually contained higher binder content and therefore the water demand was high.
Self-Compacting Concrete
To ensure thorough dispersion of silica fume and flyash, a PCE based admixture was used. Glenium SKY 584 is a PCE based admixture based on the concept of Total Performance Control which not only helps in dispersion of fines but also allows longer slump retention. The concrete was produced in an RMC plant (M/s. L&T Ready Mix Concrete) and it typically took more than 60 minutes to reach the site. Glenium SKY 584, helped in achieving the retention of over 60 minutes, with a slump flow of more than 600 mm at the site. In order to improve the viscosity of the concrete, Glenium Stream 2, a viscosity modifying admixture was also added to the concrete.

The retaining walls, at the periphery of the structure, poised an entirely different issue. The thickness of the wall was 300 mm and after erecting the form work it was a challenge by itself to place and vibrate the concrete. It was therefore decided to use M 40 grade SCC so that even 3 meter pour (free fall) of concrete is possible. The use of SCC in retaining walls actually helped in achieving a homogeneous concrete void of any honey combs. The strengths achieved were more than 50 MPa at 28 days as the water binder ratio was maintained at 0.33. The mix design and the strengths achieved are given here:

Conclusion

The use of SCC has been found to be useful particularly in rafts and basements where the concrete has to withstand higher water table pressure and in places where the thickness of raft is more than 1 meter. In places, where the reinforcement is dense or the concrete has to be placed is not so easily accessible areas such as retaining walls, use of SCC is a boon to civil engineers. Use of SCC has also been found to be suitable in cutting down the construction time for structures. Further, some innovative uses have been found in rehabilitation and repair works as well.

While the material cost of SCC has generally been higher than conventional concrete, benefits such as reduction of construction time, reduction of labor and ultimately the durability of the structure more than compensates the cost. Being a unique solution for placing concrete in difficult areas, the absence of vibration and noise is the other advantage.
NBM&CW November 2008

No comments yet, Be the first one to comment on this.

×

Terms & Condition

By checking this, you agree with the following:
  1. To accept full responsibility for the comment that you submit.
  2. To use this function only for lawful purposes.
  3. Not to post defamatory, abusive, offensive, racist, sexist, threatening, vulgar, obscene, hateful or otherwise inappropriate comments, or to post comments which will constitute a criminal offense or give rise to civil liability.
  4. Not to post or make available any material which is protected by copyright, trade mark or other proprietary right without the express permission of the owner of the copyright, trade mark or any other proprietary right.
  5. To evaluate for yourself the accuracy of any opinion, advice or other content.
Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.