Prof. Minakshi Vaghani, Assistant Professor, Civil Engineering Department, SCET, Surat
Designing beam–column joints is considered to be a complex and challenging task for structural engineers, and careful design of joints in RC frame structures is crucial to the safety of the structure. Although the size of the joint is controlled by the size of the frame members, joints are subjected to a different set of loads from those used in designing beams and columns. As a result, it is necessary to pay special attention to the detailing of reinforcement within a joint region. [36] It has been identified that the deficiencies of joints are mainly caused due to inadequate design to resist shear forces (horizontal and vertical) and consequently by inadequate transverse and vertical shear reinforcement and of course due to insufficient anchorage capacity in the joint. Therefore, inadequate transverse reinforcement and insufficient anchorage in the joint are two major problems of joints designed as per non-seismic guidelines [2]. These problems have been highlighted, in recent past, by the damages observed in devastating earthquakes in different countries. The two major failure modes for the failure at joints are (a) joint shear failure (Fig. 2) and (b) end anchorage failure

RC beam-column connections Joint Shear Failure
Figure 1: Terminology of RC beam-column connections
Source: Jaehong Kim et. al. 2009 [11]
Figure 2: Joint Shear Failure
Source: A. Sharma et al. (2011) [1]

In this study, a conventional four-storey RC school building (Fig. 3) is considered for analysis, design and detailing of exterior joint. Different failure modes are expected in beam-column joints depending on the type of joint (exterior or interior) and the adopted structural details. Due to sudden discontinuity of the geometry, exterior joints are found to be more vulnerable to seismic loading than the interior one because it demands to explore additional parameters such as bond-slip of reinforcement [Pampanin et al. (2003)]. Hence, in the present study, exterior beam-column joint has been chosen for investigating the performance under seismic type loading.

Graphical User Interface of STAAD
Figure 3: General Arrangement of the Building Frame Considered for the Study Figure 4: Graphical User Interface of STAAD.Pro

Characteristic compressive strength of concrete and tensile strength of steel used in the specimen have been taken as 30 MPa and 415 MPa, respectively. The specimen has the following general and cross-sectional dimensions: height of column is 3200 mm having cross-sections of (425 x 425) mm and length of beam is 2500 mm with beam size (300 x 525) mm. For casting the specimen, weight ratio of cement: sand: coarse aggregate was adopted as 1 (cement): 2.25 (fine aggregate): 2.35 (coarse aggregate-60% 10 mm size, 40% 20 mm size): 0.5 (w/c). Ordinary Portland Cement (OPC) with 28 days minimum compressive strength of 53 MPa is to be used.

Design of specimen using STAAD
Figure 5: Design of specimen using STAAD.Pro

The geometry of the components (top and bottom portion of column and beam length from joint face) is chosen to match the bending moment distribution at the joint for which it is designed. Seismic analysis (Response Spectrum Analysis) of the framed structure (Fig. 3) has been performed using STAAD.Pro to obtain the design forces. Design assumptions are mentioned in Table 1. The following provides a broad overview of the basic modelling, analysis, and design processes using STAAD.Pro.

Retrofitting of RC-Beam Column

The results obtained from the analysis of a 3 - bay four-storey RC building under the load combinations are used to design the specimen (Fig. 4). Finally, as shown in Fig. 5, the geometry of the components (top and bottom portion of column and beam length from joint face) is chosen to match the bending moment distribution at the joint for which it was designed.

Reinforcement Details of Specimen
Figure 6: Reinforcement Details of Specimen

Graphical User Interface of ATENA 3D Pre-Processor
Figure 7: Graphical User Interface of ATENA 3D Pre-Processor

In a numerical investigation, it is utmost important to provide the material properties as realistic as possible. There are many nonlinear finite element analysis programs of RC structures available. e.g. ATENA, ANSYS, Drain-2DX, MSC.MARC etc. Considering its application, effectiveness, user friendliness, availability, ATENA [1] has been selected for carrying out numerical analysis of the specimen designed for the study.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...

Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

As every one ton of Cement (OPC) produced, emits 0.96 tons of CO2, there is an urgent need to promote blending materials (ex. GGBS &PSC) and screened slag, to achieve lower CO2 emissions, reduce greenhouse gas effect, reduce exploitation

Read more ...

In most of the developing countries, demand for steel for use as a reinforcing material is increasing day by day. However, when steel is in short supply, one can consider bamboo as an alternative material for reinforcement

Read more ...

There is high demand for white cement in countries with hot climates, as more heat is reflected from white concrete surfaces as compared to standard grey concrete. As a value-added product, white cement is becoming

Read more ...

Garry Martin, Director - Major Projects, Low & Bonar Construction Fibres, presents a new examination of the benefits of micro fibres in both the plastic and hardened state of concrete and their contribution to increased sustainability.

Read more ...

An integrated material and structural design strategy of strength through durability is the need of the hour since structures are designed for ductility and structural integrity. Dr. S. B. Hegde, President – Manufacturing

Read more ...

The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...