Reactivity of Alite and Belite towards Sustainability of Concrete

Dr. S.B.Hegde, Professor, Pennsylvania State University, USA
Dr. S.B.Hegde
Professor, Pennsylvania State University, USA

Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured from natural raw materials (and because alumina and iron are included to form liquids at kiln temperatures to improve the efficiency of kiln reactions). However, the word impurity may have a negative connotation, in this case, impurities are typically a benefit, as they stabilize clinker phases at lower kiln temperatures (reducing kiln energy requirements and related CO2 emissions) and can make the cement phases more reactive when mixed with water.

A range of these impurities are found naturally in cement raw materials and they form clinker phases with a range of compositions and reactivities. Alite and belite account for about 75% by weight of modern cements and dominate the development of properties such as setting time and strength development. Although both are calcium silicates, alite reacts much more quickly than belite when mixed with water. Both alite and belite react to form calcium silicate hydrate (known in cement chemistry shorthand as C-S-H), which is the primary binding material in cement paste, mortar, and concrete.

A Review of Research
The total amount of alite and belite in cements has not changed appreciably in many decades and is limited by process considerations; however, modern cements are produced in kilns with better control of burning conditions allowing higher percentage of alite in cements, which respond to market demands for higher early strength gains permitted by its relatively rapid reactions.

The overall reaction of alite and belite can be described chemically (approximately) as:

C3S + 5.3 +ĺ&1.7-S-H4 + 1.3 CH
C2S + 4.3 +ĺC1.7-S-H4+ 0.3 CH

where H is water (H2O) and CH is calcium hydroxide. Note that the reaction products of both silicates are C-S-H and CH. C-S-H is the main binding phase in Portland cement-based systems and primarily responsible for the strength and durability of concrete. CH is a by-product of the hydration reaction that does not contribute much directly to the strength of concrete (it is a solid, and thus reduces porosity, which of course does improve strength).

Calcium hydroxide is beneficial however as it helps maintain a pH at which embedded reinforcing steel is maintained in a passivated state thereby preventing corrosion. CH also reacts with silicates in supplementary cementitious materials (SCMs) like fly ash to produce additional C-S-H via a pozzolanic reaction. Reducing the quantity of CH resulting from hydration of Portland cements, however, can improve the potential strength and durability of concrete. Belite produces about ¼ as much CH as alite and thus relatively more C-S-H. It might be expected that cement would therefore be composed of as much belite as practical.

However, the early reaction of belite is much slower than alite and therefore a problem for efficient construction cycles. As well, the higher CH contents of cements with higher alite contents may favour use of higher levels of SCMs, which can significantly reduce concrete’s environmental footprint.

Some researchers have suggested that the increased amount of calcium hydroxide (CH) resulting from the hydration of modern cements could lead to reduced durability. Calcium hydroxide is relatively soluble in water and can react with sulfate ions to form gypsum in an expansive reaction, which is a secondary sulfate attack mechanism. Since CH provides relatively little contribution to strength compared to C-S-H, stronger, more durable concrete in some applications might be obtained if the quantity of belite is increased relative to the percentage of alite. However, the slow reaction rate of belite makes it less suitable for use as the primary silicate in cement from a practical standpoint. If the reaction of belite could be accelerated, several benefits might be achievable:
  1. Relatively C-S-H, perhaps increasing concrete sustainability as less cement might be needed to achieve necessary strength and durability.
  2. Since belite forms at lower kiln temperatures and requires less limestone as a raw ingredient in cement manufacture, perhaps 10% to 15% lower CO2 emissions from calcination and fuel burning, as well as lower energy consumption might be achieved.
  3. Improved knowledge about reaction mechanisms could also lead to more reactive alites, which could also improve sustainability. In contrast, several potentially negative effects of higher belite contents in cements might be observed: 1. Relatively less CH would be formed, limiting the use of SCMs, like fly ash and slag, which partially react with CH to form additional C-S-H (although at a slower rate compared to clinker silicates), and 2. Grinding energy may be increased for cements rich in belite. Although belite is slightly “softer,” alite is more brittle. The net result is that alite is generally slightly easier to grind; however, a number of other factors also impact clinker grindability.
Reactivity of alite and belite
The term “reactivity” has different meanings. To a cement chemist, it is a measure of how fast the reactions of cement with water occur. This might be measured in overall terms by techniques such as measuring the heat generated when a paste reacts with water (reactions of the primary cement phases with water are exothermic) or by tracking the concentrations of various ions in solution. It might be determined microscopically by measuring the amount of hydration products that form over time or by determining how much clinker has dissolved after a certain amount of time.

To a concrete technologist, reactivity may refer to how quickly a cement paste, mortar or concrete reaches initial set or gains strength. All of these definitions are related, because they all depend on the multiple simultaneous chemical reactions that occur when cement comes into contact with water.

A general calorimetry curve for alite displays some of the complex characteristics of the reactions of these phases. Stage 0 is usually attributed to wetting of the particles and Stage I is an initial brief reaction period in which perhaps 1% to 2% of alite is reacted. Stage II is referred to the induction period, a time of very low reactivity shortly after mixing with water. This period is characteristic not only of alite, but also Portland cements. The induction period is useful because it provides sufficient working time for concrete or mortar to be placed and consolidated before setting and gaining appreciable strength, which for alite typically lasts a few hours, while for belite it may last a few days.

Stage III is the period when the hydration reactions begin in earnest and setting and strength development take place. During Stage IV the reactions slow while strength development continues. Strength and hydration reactions continue in a slow and decreasing rate in Stage V, provided sufficient water and space for hydration products remain. Each of these stages of reaction can be better understood, and this understanding could lead to improved control and optimization of cement-based materials.

Polymorphism of Alite and Belite
Alite has two common polymorphs (different crystal structures for the same phase): M1-C3S and M3-C3S, both are monoclinic (hence the “M”), which describes the shape of the crystal. These two monoclinic structures are the same crystal shape, but the M1 and M3 forms of alite have different spacing of the atoms in the crystals, possibly due to different types or levels of “impurity” atoms in the crystals making those crystal forms stable. Likewise, Belite also has two, is also monoclinic in shape, while the other, (ɲH’-C2S), is triclinic. Impurities in clinker are often beneficial as they can make the crystals more reactive (and conversely, some can make the crystals less reactive). Thus, impurities can impact alite and belite reactivity in two ways: by stabilizing polymorphs that are more (or less) reactive and by making the crystals of specific polymorphs less (or more) stable, and therefore more reactive.

Other advantages may result from the detailed study of silicate reactivity. Several theories have been postulated to account for the induction period, the period when concrete can be placed and formed/finished before hardening and strength development. Detailed studies of the reaction mechanisms can provide a fundamental understanding of the induction period, and potentially new avenues for the control of this critical period.

Conclusion
Alite reacts relatively rapidly with water and is responsible for most of the early strength development of concretes. Belite is less reactive at early ages, but can contribute appreciably to strength at later ages.

The manufacture of cements with higher alite contents may have a larger environmental impact. Compositionally, increased limestone quantities in the raw meal are required to form alite, which results in higher CO2 emissions from calcination.

If cements with higher belite contents could be developed with strength gain characteristics similar to current cements, cements could be manufactured with a reduced environmental impact, which would result in a lower environmental footprint for concrete as a construction material.

In contrast to this approach is the concept that, because of high initial strength development, cements with higher alite contents can be used in concretes with higher amounts of secondary cementitious materials like fly ash, slag etc. This also has the potential to reduce the environmental impact of cement manufacturing and concrete production. Silicate phases also impact finish grinding energy requirements of cements. More reactive alite and belite could lead to grinding energy savings as coarser cements may be able to be used with no loss of early strength development or other performance characteristics.
Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...