Potential Benefits of Flyash in Attaining the Workability of Silica Fume Concrete

Dr. Jaspal Singh, Professor, Civil Engg Department, Er. Anil Kumar Nanda, Civil Engg Department, PAU Ludhiana


Building industry, is one of the key areas of infrastructure development & for catering to the requirements of building materials, we are dependent on natural resources. As natural resources are depleting day by day, we have to think of alternate measuries. Use of industrial wastes for this purpose is beneficial as by this, not only natural resources are conserved but solution to safe disposal of industrial waste is obtained. Flyash and silica fume are the promising industrial wastes which can be easily harnessed in construction. With the increase in the number of coal-based thermal power plants in India, generation of fly ash has reached enormous proportions. In India, about 100 million tonnes of flyash is accumulated every year which is generated as waste from thermal plants. This is causing enough concern as its disposal involves design and installation of ash ponds covering large areas at each plant site. In spite of concerted efforts on a national scale, only a very small fraction (around 6%) of the fly ash is put to use in India, compared to its utilization to a greater extent in other countries.

Silica fume is also a waste by-product from the silicon metal and ferrosilicon alloy industries. The chief problems in using this material are associated with its extreme fineness and high water requirement when mixed with Portland cement. However, if used with superplasticizers, we can attain good workability of concrete.

Workability of concrete plays a vital role in all construction works, affecting the speed of construction and placing of concrete, which in turn affect the financial aspect of construction project. The use of silica fume reduces the workability of fresh concrete or mortar due to its very high specific surface area; however, it improves many of the properties of hardened concrete or mortar. Earlier workability of concrete was controlled by amount of water added during mixing and setting characteristics were adjusted with the help of admixtures to modify the properties of concrete. Nowadays, Superplasticizers are added to concrete to get highly workable concrete. They are assuming increasing popularity for use in concrete, because of advantages they offer in handling, placing and compaction of concrete. Though use of superplasticizers is very common in developed countries, the superplasticizers are not so common in developing countries like India. It is in this context that effort has been made to study the effect of addition of superplasticizer in addition to fly ash and silica fume on workability of concrete.


Portland cement

xOrdinary Portland cement (OPC) of 43 grade (Ultratech) confirming to IS: 8112:1989 was being used for making concrete. The relevant cement properties experimentally obtained are given in Table 1.

Table 1: Properties of OPC 43 grade cement
S. No. Characteristics Value obtained experimentally Value specified by IS:8112:1989
1. Specific gravity 2.975 -
2. Standard consistency 32% -
3. Initial setting time 123 min 30 min (minimum)
4. Final setting time 266 min 600 min (maximum)
5. Compressive strength
3 Days
7 Days
28 Days

29.18 N/mm2
33.78 N/mm2
47.36 N/mm2

23 N/mm2
33 N/mm2
43 N/mm2
The values obtained conform to specifications given in code


i) Coarse Aggregate

The coarse aggregate used were a mixture of two locally available crushed stone of 10 mm and 20 mm size in 50:50 proportion. The aggregates were washed to remove dirt, dust and then dried to surface dry condition. Specific gravity and other properties of coarse aggregate are given in Table 2. Then sieve analysis of coarse aggregate was done. Proportioning of coarse aggregate was done and Fineness Modulus was obtained as given in Table 3.

Table 2: Properties of coarse aggregates
Characteristics Value
Colour Grey
Shape Angular
Maximum size 20 mm
Specific gravity 2.63

Table 3 : Fineness modules of proportioned coarse aggregate
IS Sieve designation Weight retained on sieve in gms (10 mm aggregates) Weight retained on sieve in gms (20 mm aggregates) Average weight retained (gm) Cumulative weight retained (gm) Cumulative @age weight retained (gm) %age passing
80 mm 0.00 0.00 0.00 0.00 0.00 100.00
40 mm 0.00 0.00 0.00 0.00 0.00 100.00
20 mm 0.00 270 135 135 2.7 97.3
10 mm 2190 4710 3450 3585 71.7 28.3
4.75 mm 2780 20 1400 4985 99.7 0.30
2.36 30 0 15 5000 100 0
PAN - - - - - -

Cumulative percentage weight retained = 674.1

Fitness Modules (F.M.)= Say 6.74

It lies within desirable range 5.5-8.0

Table 4 : Fineness Modulus of the fine aggregates
Sieve no. Retained on each sieve weight (gm) Retained on each sieve
Cumulative %age retained %age
for zone-II
as per
10mm 0 0 0 0 100
4.75 mm 80 gm 4 4 96 90-100
2.36 mm 200 gm 10 14 86 75-100
1.18 mm 500 gm 25.0 39 61 55-90
600 Micron 510 gm 25.5 64.5 35.5 35-59
300 Micron 240 gm 12.0 76.5 23.5 8-30
150 Micron 360 gm 18.0 94.5 5.5 0-10
Pan 110 gm 5.50      
Total wt. of sample 2000 gm 100 292.5    
Fineness modulus = 2.925 and it falls in zone II

ii) Fine Aggregates

Fine aggregates were collected from Chaki River Pathankot. It was coarse sand brown in color. Specific gravity of fine aggregates was experimentally determined as 2.62. Then test on sieve analysis of fine aggregates was performed to get Fineness Modulus.

Fly Ash

Fly ash used in present work was obtained from Guru Hargobind Thermal Plant Lehra Mohabbat, Distt. Bathinda. The fly ash, which was used, falls under class F category. The results of physical properties are given in Table 5.

Table 5: Physical properties of fly ash

S. No.
Characteristics Values
1 Colour Light brown
2. Specific gravity 2.09
3. Class F
4. Chemical composition
Lime reactivity

5. Sieve analysis  
  Sieve no. %age of weight retained

Silica Fume

The silica fume used was obtained from Orkla India (Pvt) Ltd (Brand name: Elkem Microsilica 920-D), Navi Mumbai. Its chemical composition and other properties are given in Table 6.

Table 6 : Physical properties of silica fume
S. No. Characteristics Values
1 Specific gravity 2.26
2. Color Grey
3. Chemical composition


Super Plasticizer

The super plasticizer used in the study program was Rheobuild SPI obtained by Basf construction chemicals (India) Pvt. Ltd., Navi Mumbai. It was based on Naphthalene formaldehyde polymer. The physical and chemical properties of super plasticizer, which was obtained from the company, conform to IS-9103-1979 and are given in Table 7.

Table 7 : Properties of super plasticizer Rheobuild-SP1
S. No. Parameter Specifications (As per IS 9103) Properties of Rheobuild SPI
1. Physical state Dark brown free flowing liquid Dark brown free flowing liquid
2. Chemical name of active ingredient Naphthalene formaldehyde polymers Naphthalene formaldehyde polymers
3. Relative density at 250C 1.15 ± 0.02 1.151
4. pH Min 6 7.34
5. Chloride ion content (%) Max 0.2 0.0010
6. Dry material content 32 ± 5 (%) 32.04
7. Ash content 8 ± 5 (%) 8.01

Mix Design by Indian Standard Recommendations

Present investigation includes design of concrete mix (non-air entrained) for medium strength concrete. The guidelines given in various codes like SP: 23-1982, IS: 10262-1982 and IS: 456-2000 have been adopted for mix design of concrete.

Table 8 : Quantities per cubic meter for trial mixes with compressive strength
Mix No. Water cement ratio Cement (kg) Sand (Kg) Coarse aggregate (Kg) Average cube strength at 7 days (N/mm2) Average cube strength at 28 days (N/mm2)
1 0.32 579.375 467.58 1108.52 47.21 60.42
2 0.32 540 487.69 1156.27 44.0 58.56
3 0.32 500 508.15 1204.77 48.6 57.31
4 0.32 480 518.00 1229.00 34.85 54.71
5 0.32 450 533.75 1265.40 40.22 44.26

Table 9: Workability with the varying percentage of silica fume & flyash
fly ash
silica fume
silica fume
silica fume
Reference mix
0 0.870 0.852 0.845 0.92
10 0.887 0.860 0.857
15 0.895 0.874 0.869
20 0.902 0.886 0.882

Table 10: Analysis of variance for various percentage of fly ash & silica fume for compaction factor
Source/Treatment Mean values of compaction factor  of reference mix Mean values of compaction factor Critical difference
Silica fume 4% Silica fume 8% Silica fume 12%
Compaction factor with 0 % flyash 0.92 0.870 0.852 0.845 0.0230
Compaction factor with 10 % flyash 0.887 0.860 0.857 0.0224
Compaction factor with 15 % flyash 0.895 0.874 0.869 0.0196
Compaction factor with 20% flyash 0.902 0.886 0.882 0.0221

For the present investigation, it is required to have characteristic compressive strength 40 N /mm2. the mean target strength is 49.24N/mm2 The compaction factor for the design mix is taken as 0.9. The maximum size of aggregate is 20 mm (angular). Type of exposure is taken as moderate and degree of quality control as very good.

Trial Mixes

The quantity of cement obtained after mix design i.e. 579.375 is much more than the maximum range of cement i.e. 450 kg/m3 as specified in IS 456-2000. So five trial mixes were prepared and average cube strength were obtained after 7 days & 28 days as given in Table 8.

Workability of Concrete

The compaction factor test was performed to see the effect of addition of silica fume and flyash on concrete. The workability of reference and all other concrete mixes as detailed in Table 9 was measured in terms of compaction factor test. It is observed that compaction factor lies between 0.845 to 0.92. Workability of concrete slightly improved with the addition of percentage of flyash to all the percentage of silica fume. In the case of 4 % silica fume and at 0% level of flyash, compaction factor was 0.87. With the addition of 10%, 15% and 20% of flyash, compaction factor improved / increased to 0.887, 0.895 and 0.902 respectively. For 8% of silica fume & at 0% level of flyash, compaction factor was 0.852. With the addition of 10%, 15% & 20% of flyash, compaction factor improved to 0.86, 0.874 & 0.886 respectively. Similarly, for 12% of silica fume and at 0% level of flyash, compaction factor was 0.845. With the addition of 10%, 15%, and 20% of flyash, compaction factor improved to 0.857, 0.869 and 0.882 respectively. The improvement in workability with the addition of flyash to the concrete can be explained on the basis of ball bearing effect of spherical particles of flyash as spherical particles needs less water as compared to other shapes. Probably, another factor contributing to the improvement in workability is increased amount of paste in mix which in turn produces a lubricating effect on ingredients of concrete and helps in achieving a free flowing concrete with closer packing of materials. Conversely, the workability decreased with the addition of percentages of silica fume to all the percentages of flyash. At 0% level of flyash, compaction factors were 0.87, 0.852 & 0.845 with the addition of 4%, 8% & 12% of silica fume respectively. At 10% level of flyash, compaction factors were 0.887, 0.860 & 0.857 with addition 4%, 8% & 12% of silica fume. At 15% level of flyash, compaction factors were 0.895, 0.874 & 0.869 with the addition of 4%, 8%, & 12% of silica fume. Similarly, at 20% level of flyash, compaction factors were 0.902, 0.886 & 0.882 with addition 4%, 8% & 12% of silica fume. The optimum value of compaction factor was at the replacement level of 24% i.e. 20% of flyash & 4% of silica fume by weight of cement. After the optimum level of replacement of flyash & silica fume, if we still add silica fume corresponding to 20% of flyash, the compaction factor starts decreasing. It is due to the fact that surface area is increased due to increased fineness and greater amount of water is required to get a closer packing which results in decrease in workability of concrete mixes at higher replacement levels. The variation of workability with different %ages of flyash and silica fume is as shown in Figure 1.

Moisture Density Relationship
Figure 1: Workability with the varying percentage of silica fume and flyash Statistical analysis

Effect of various %ages of silica fume and flyash on Workability.

The effect of various %age of silica fume and fly ash on workability was statistically significant at 5% level of significance. The values of critical difference and mean compaction factor are given in Table 10.


The workability was determined using compaction factor test. The statistical analysis was applied on values/results of workability of concrete. All the values/results were found statistically significant.

From the experimental investigation, the following main conclusions can be drawn:

  1. Low water cement ratios like 0.32 can be tried for producing a concrete for commercial purposes but appropriate superplasticizer compatible with the materials are required to be used.
  2. Optimum level of replacements of cement by flyash obtained from Guru Hargobind Thermal Plant Lehra Mohabat, Distt. Bhatinda is around 10% for producing medium range of workability concrete.
  3. Optimum level of replacements of cement by silica fume is around 4% for producing medium range of workability concrete.
  4. The combination of flyash and silica fume is capable of producing a medium range of workability of concrete as partial replacement of cement. The optimum replacement levels of flyash and silica fume are 20% and 4%. This optimum level of combination gave maximum value of compaction factor i.e 0.902
  5. As silica fume & superplasticizer are costly materials and it may not be economical to use them. But when these materials are used with flyash (a waste), workability is likely to improve as evident from the investigation carried out by the authors.


  • Bhatnagar Anil and Kumar Rajesh (2007) Use of flyash in rooler compacted concrete dams. The Indian Concrete Journal 81:90-100.
  • Cohen Menashi D (1990) A look at silica fume and its actions in Portland cement concrete. The Indian Concrete Journal 64:429-38
  • Gambhir M L (1992) Concrete manual. Pp. 44. Dhanpat Rai & sons, New Delhi.
  • Gambhir M L (1996) Concrete technology. Pp. 23-25. Tata Mcgraw- Hill Publishing company limited, New Delhi.
  • Gopalakrishanan S, Rajamane N P, Nelamegam M, Peter J A and Dattatreya J K (2001) Effect of partial replacement of cement with fly ash on the strength and durability of HPC. The Indian Concrete Journal 75: 335-41.
  • Goyal S, Kumar M and Bhattacharjee B (2008) Potential benefits of incorporating fly ash in silica fume concrete. The Indian Concrete Journal 82: 38-46.
  • IS: 10262-1982 (Reaffirmed 2004): Recommended guidelines for concrete mix design, Bureau of Indian Standard, New Delhi-2004.
  • IS: 8112:1989 (Reaffirmed 2005): Specification for 43 grade Ordinary Portland Cement, Bureau of Indian Standard, New Delhi-2005.
  • IS: 9103:1999 (Reaffirmed 2004): Concrete Admixtures-Specifications, Bureau of Indian Standard, New Delhi-2004.
  • IS: 383-1970: Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standard, New Delhi-1970.
  • IS: 1199-1959 (Reaffirmed 1999): Methods of Sampling and Analysis of Concrete, Bureau of Indian Standard, New Delhi-1999.
  • IS: 2386 (Part I,III)-1963: Methods of Test for Aggregates for Concrete, Bureau of Indian Standard, New Delhi-1963.
  • IS: 4031 (Part 4,5&6)-1988: Methods of Physical Tests for Hydraulic Cement, Bureau of Indian Standard, New Delhi-1988.
  • Jolicoeur C, Mikanovic N, Simard M A and Sharman J (2002) Chemical admixtures: Essential components of quality concrete. The Indian Concrete Journal 76: 537-47
  • Mittal Amit (1998) Development of high perpormance concrete for containment dome of kaiga atomic power project. The Indian Concrete Journal 72: 193-202
  • Mullick A K (2008) Cement – superplasticizer compatibility and method of evaluation. The Indian Concrete Journal. 82: 8-15.
  • Ojha R N (1996) Use of fly ash and condensed silica fume in making concrete. The Institute of Engineers (I) Journal-CV 77: 170-73.
  • Shetty M S (2009) Concrete technology. Pp. 29-184. S.chand & Company limited, New Delhi.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...