Polished Concrete Floors
Anant Shekhar Sahay, Vice-president Business Development-South East Asia, Bomanite India.
Although currently there are no industry standards specifying concrete tolerances specific to polished concrete, manufacturers as well as installers are coming up with their own set of standards to obtain a quality polish job. On new concrete installations that will ultimately receive polishing, certain performance criteria need to be met so the polishing company can perform a uniform quality job.

On new concrete installations, the concrete mix design is critical. Using a cement-rich concrete (typically 3,500 psi) provides a dense surface free of voids for the polishing process. We can also use many times water-reducing admixtures to keep a low water cement ratio without jeopardizing the workability during the concrete placement. Wet curing of the new slab is an excellent way of curing but many times it is not practical. If this is the case, dissipating liquid applied curing compounds are a good way to cure the slab. Any remaining curing compound that does not dissipate over time is usually easily removed during the coarse-grinding phase of the polishing process.

Polished Concrete Floors Polished Concrete Floors

Of equal importance to the appropriate mix design is how the concrete is placed and finished. The flatness and levelness of the concrete substrate is crucial not only for a uniform polish, but also how the project is bid. Floors that have excessive highs and lows will require a tremendous amount more grinding, increasing your labor costs as well as the costs of your diamond tooling.

According to industry standards, finished concrete shall have a minimum Floor Flatness rating of at least 40. The industry standard for terrazzo is no more variance than 1/4 in. in a 10-ft. span, which can also be applied to polished concrete. If the slab is being machine troweled with walk-behind machines, it is imperative to not leave indentations or boot marks behind since they are not easily removed during the polishing phase.

The main methods of coloring polished concrete consist of integrally coloring the concrete mix or staining or dyeing the surface after the fact. By far the easiest and most controllable method is to integrally color your concrete. Most integral color is either in the liquid or powder form and added at the ready-mix batch plant and then mixed for a specified time. Color loads for integral color should never be smaller than 3 cu. yds. for color consistency. Colored aggregate or crushed glass can be added to the concrete mix or hand seeded into the top layer of the mix. The polishing process will reveal the underlying aggregate.

Adding colors to polished concrete, either integrally or with stains and dyes, can create a distinctive look for your floors.

Polished Concrete Floors Polished Concrete Floors

Acid staining or dyeing is a great method of achieving color on polished floors. Different applicators have different methods and time frames of applying the stains and dyes. We have had excellent results with applying dyes around the 400-grit phase. Let's review the process:
  • Coarse grind with 40-grit metal bond (if necessary)
  • Grind with 80-grit metal bond
  • Apply densifier
  • Grind with 150 metal bond
  • Remove scratch pattern from 150 grit with 100/200 resin bond
  • Remove scratch pattern from 100/200 grit with 400 resin bond
  • Apply color stains or dyes
  • Polish with 800-grit resin bond
  • Polish with 1,500-grit resin bond
  • Polish with 3,000-grit resin bond
There are certain situations that the consumer may not choose a 3,000-grit polish. Most Home Depots or Lowe's, for example, typically are polished to 800 grit. There are many levels of polished floors that stop short of truly being "polished concrete," but have their own unique and distinctive look.

Polished Concrete Floors
For the professional polisher, it is often debatable if some type of topcoat is needed with some claiming that it defeats the purpose of polishing relative to the ongoing maintenance. Especially when using dyes, we feel that it is necessary to apply two thin coats of reactive penetrating sealer to help lock the color in. If applied properly - over a clean surface in multiple thin coats (1,500 to 2,000 sq. ft. per coat per gallon) - this provides an extremely hard surface and helps preserve the finished floor. Because most of the material penetrates the surface and is applied very thin, scuffing or scratching is usually not a problem.

Dealing with edges up against walls is always an issue. If the polished surface is to terminate directly against the wall, there are walk-behind machines to address this. Most of the time, tooling by hand with grinders and diamond pads is necessary. Another way to address edges is to use different mediums and create a border making the edge an architectural feature. We have had great results saw-cutting a border in and then using cement based skims or colored epoxy.

If you are considering to pursue the polished concrete market, make sure you do your homework. The purchase of equipment can be a large investment. Talk with manufacturers of polishing equipment and ask why their equipment and services are better than others. Make sure you have a market to support the hefty investment. Polishing machines can also be used for other applications, such as adhesive and coatings removal or to prepare surfaces for decorative overlays, to name a few.
Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

FAIRMATE manufactures a complete range of construction chemicals and provides cost-effective solutions and world-class services to the Speciality Construction Chemicals Industry in alliance with leading

Read more ...

Corrosion of concrete is a major issue and many concrete structures on adverse environment have experienced unacceptable losses in terms of serviceability, ultimately requiring replacement

Read more ...

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability

Read more ...

Cement concrete is the most consumed materials on the earth next only to water. The ingredients used in preparing concrete are not sustainable. The ingredients are responsible for causing global warming. The most

Read more ...

India’s ready-mix concrete (RMC) market is projected to witness a 7-9% CAGR in the next five years. This growth is predominantly driven by the increased investments in the development of infrastructure throughout

Read more ...

Concrete, being a physical mixture of cement, aggregate (sand and crushed rocks), and water, is the key construction material across the world. There is now a huge demand for infrastructure which has increased concrete

Read more ...

There is a need for technologically advanced concrete admixtures for the ready-mix industry that meet industry codes and meet or exceed the demands of challenging construction applications and adverse placement conditions

Read more ...

High Performance Concrete (HPC) is seeing major applications in the field of civil engineering constructions such as long-span bridges, tunnels, high-rise buildings, huge complexes, highway pavements, and more, since

Read more ...

Concrete being the second largest consumed material after water needs attention towards sustainable construction with an increase in infrastructure. The world is moving towards innovative techniques and methodologies

Read more ...

Co-processing of waste in the cement industry is an advanced and innovative recovery process whereby energy is recovered, and the non-combustible part of the waste is reused as raw material.

Read more ...

Traditional masonry units are not sustainable and eco friendly due to consumption of fuel or cement. It is essential to find sustainable alternatives. This paper reports about preparation of geopolymer bricks, masonry

Read more ...

Geo-polymer mortar (GPM) is proven for its strength, durability and sustainability [2 & 3]; strength of GPM is a function of alkaline to binder ratio, and has an adverse effect on consistence properties of mortar

Read more ...

Comparison of Reinforced and Pre-Stressed Concrete Building Frames This article discusses pre-stressing of concrete to get lighter and slender beam sections for six different four storied concrete building frames of different spans/lengths by the application of post-tensioning

Read more ...

Ready mix concrete (RMC) is the first choice for projects requiring concrete. The term ‘ready mix’ is used to describe a process where concrete is pre-made at a plant and delivered in batches to job sites. It is a convenient

Read more ...

When we talk of Primers that are applied before the paint work, what comes to mind are the Acrylic Primers. However, since the last few years, White Cement-based Primers are gaining popularity amongst the construction

Read more ...

Chemistry is truly relevant for concrete because chemistry controls the life/durability of concrete. It explains why cement hardens and the interaction between cement and its environment. Dr. S.B.Hegde at Udaipur Cement Works

Read more ...

Concrete is considered the world’s most versatile, durable and reliable construction material, next only to water. It is the most consumed material requiring large quantity of cement, fine aggregates, course aggregates

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.