Polished Concrete Floors

Polished Concrete FloorsAnant Shekhar Sahay, Vice-president Business Development-South East Asia, Bomanite India.

Although currently there are no industry standards specifying concrete tolerances specific to polished concrete, manufacturers as well as installers are coming up with their own set of standards to obtain a quality polish job. On new concrete installations that will ultimately receive polishing, certain performance criteria need to be met so the polishing company can perform a uniform quality job.

On new concrete installations, the concrete mix design is critical. Using a cement-rich concrete (typically 3,500 psi) provides a dense surface free of voids for the polishing process. We can also use many times water-reducing admixtures to keep a low water cement ratio without jeopardizing the workability during the concrete placement. Wet curing of the new slab is an excellent way of curing but many times it is not practical. If this is the case, dissipating liquid applied curing compounds are a good way to cure the slab. Any remaining curing compound that does not dissipate over time is usually easily removed during the coarse-grinding phase of the polishing process.

Polished Concrete Floors


Of equal importance to the appropriate mix design is how the concrete is placed and finished. The flatness and levelness of the concrete substrate is crucial not only for a uniform polish, but also how the project is bid. Floors that have excessive highs and lows will require a tremendous amount more grinding, increasing your labor costs as well as the costs of your diamond tooling.

According to industry standards, finished concrete shall have a minimum Floor Flatness rating of at least 40. The industry standard for terrazzo is no more variance than 1/4 in. in a 10-ft. span, which can also be applied to polished concrete. If the slab is being machine troweled with walk-behind machines, it is imperative to not leave indentations or boot marks behind since they are not easily removed during the polishing phase.

Polished Concrete Floors


The main methods of coloring polished concrete consist of integrally coloring the concrete mix or staining or dyeing the surface after the fact. By far the easiest and most controllable method is to integrally color your concrete. Most integral color is either in the liquid or powder form and added at the ready-mix batch plant and then mixed for a specified time. Color loads for integral color should never be smaller than 3 cu. yds. for color consistency. Colored aggregate or crushed glass can be added to the concrete mix or hand seeded into the top layer of the mix. The polishing process will reveal the underlying aggregate.

Polished Concrete Floors


Adding colors to polished concrete, either integrally or with stains and dyes, can create a distinctive look for your floors.

Acid staining or dyeing is a great method of achieving color on polished floors. Different applicators have different methods and time frames of applying the stains and dyes. We have had excellent results with applying dyes around the 400-grit phase. Let's review the process:

  • Coarse grind with 40-grit metal bond (if necessary)
  • Grind with 80-grit metal bond
  • Apply densifier
  • Grind with 150 metal bond
  • Remove scratch pattern from 150 grit with 100/200 resin bond
  • Remove scratch pattern from 100/200 grit with 400 resin bond
  • Apply color stains or dyes
  • Polish with 800-grit resin bond
  • Polish with 1,500-grit resin bond
  • Polish with 3,000-grit resin bond

There are certain situations that the consumer may not choose a 3,000-grit polish. Most Home Depots or Lowe's, for example, typically are polished to 800 grit. There are many levels of polished floors that stop short of truly being "polished concrete," but have their own unique and distinctive look.

Polished Concrete Floors


For the professional polisher, it is often debatable if some type of topcoat is needed with some claiming that it defeats the purpose of polishing relative to the ongoing maintenance. Especially when using dyes, we feel that it is necessary to apply two thin coats of reactive penetrating sealer to help lock the color in. If applied properly - over a clean surface in multiple thin coats (1,500 to 2,000 sq. ft. per coat per gallon) - this provides an extremely hard surface and helps preserve the finished floor. Because most of the material penetrates the surface and is applied very thin, scuffing or scratching is usually not a problem.

Polished Concrete Floors

Dealing with edges up against walls is always an issue. If the polished surface is to terminate directly against the wall, there are walk-behind machines to address this. Most of the time, tooling by hand with grinders and diamond pads is necessary. Another way to address edges is to use different mediums and create a border making the edge an architectural feature. We have had great results saw-cutting a border in and then using cement based skims or colored epoxy.

If you are considering to pursue the polished concrete market, make sure you do your homework. The purchase of equipment can be a large investment. Talk with manufacturers of polishing equipment and ask why their equipment and services are better than others. Make sure you have a market to support the hefty investment. Polishing machines can also be used for other applications, such as adhesive and coatings removal or to prepare surfaces for decorative overlays, to name a few.

NBM&CW March 2011

No comments yet, Be the first one to comment on this.

Durability and Sustainability of Hardened Concrete

Durability and Sustainability of Hardened Concrete

Concrete is widely used in construction, yet its longevity and sustainability often go unnoticed until signs of premature deterioration appear. To truly understand how to extend its service life, it is crucial to explore the factors

Read more ...

Role of Chemical Admixtures in Enhancing Construction Durability

Role of Chemical Admixtures in Enhancing Construction Durability

“In modern construction, the integration of chemical admixtures is not just an enhancement—it's a necessity. By improving durability, performance, and sustainability, these innovations are shaping the future of infrastructure.

Read more ...

ICrete by Amazecrete: A Game-changer Concrete Additive

ICrete by Amazecrete: A Game-changer Concrete Additive

With the introduction of ICrete, we are pushing the boundaries of concrete technology with solutions that address both performance and environmental challenges. Kowshika V R, Executive Director, Amazecrete

Read more ...

Grinding Aids as Energy Saver in Cement Production

Grinding Aids as Energy Saver in Cement Production

The benefits of using different grinding aids in cement production are improved output, decreased energy consumption, cost reduction, and minimizing the carbon footprint- all of which are steps forward in bringing greater sustainability

Read more ...

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

The recent acquisition of BuildTech by Thermax exemplifies a significant trend within the industry towards strategic expansion and enhanced capabilities in construction technologies.

Read more ...

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete has emerged as a new age material for Concrete Construction given its efficacy in increasing the strength and durability of concrete, bringing value additions and greater profitability to the users.

Read more ...

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

The Cement Industry is embarking on a Net Zero pathway, aiming for a 25% reduction in CO2 emissions by 2030 and a full decarbonization by 2050, driven by technological innovations, use of alternative raw materials, and circular economy

Read more ...

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Plastic hinges form at the maximum moment region of reinforced concrete columns. A reasonable estimation of the plastic hinge length is key to successfully modeling the lateral load-drift response and conducting a proper seismic

Read more ...

Properties and Applications of Geopolymer Masonry Blocks

Properties and Applications of Geopolymer Masonry Blocks

Radhakrishna, Professor and Head, Department of Civil Engineering, RV College of Engineering, Affiliated to Visvesvaraya Technological University, Bengaluru. Block masonry is one of the oldest methods of construction. It is composed

Read more ...

Advancing LC3 Cement Technology for Sustainable Construction in India

Advancing LC3 Cement Technology for Sustainable Construction in India

Dr S B Hegde provides a deep, research-driven analysis of LC3 cement, emphasizing its chemistry, process innovations, global applicability, and success stories, and evaluates its technical advantages, performance, cost savings

Read more ...

Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.