Influence of Recycled Aggregates, Foundry Sand and Fly Ash on Compressive Strength of Concrete

Deepak Gupta, Associate Professor, Ramneek Singh, M.tech Student, Department of Civil Engg., Punjab Agricultural University, Ludhiana

Introduction

Concrete is the first and foremost material required in the construction works. It is one of the most versatile, economical and universally used construction material. It is among the few building materials produced directly on the job by the user. The key to use of concrete is the ease with which structural concrete elements can be formed into a variety of shapes and sizes because of the plastic consistency of freshly made concrete which permits the material to flow into prefabricated formwork. It is the second most consumed material after water and is the basis for the urban environment. It is estimated that the present consumption of concrete in the world is of the order of 12 billion tonnes every year. Concrete is a composite material that consists essentially of a binding medium within which fragments of aggregates are embedded. The three basic ingredients of concrete are cement, aggregate and water. Cement binds the ingredients together, the aggregates add bulk to the concrete and water gives viscosity to concrete in order to be moulded and react with the ingredients. Each constituent influences the characteristics of the concrete and must be controlled as to composition and quantity if the end product is to be within acceptable limits of workability and strength.

The utilization of recycled aggregate is particularly very promising as 75% of concrete is made of aggregates. Recycled aggregates comprises of crushed, graded inorganic particles processed from the materials that have been used in the constructions and demolition debris. Most of the waste materials produced by demolished structures is disposed off by dumping into landfills. Further, the user agencies/point out that presently, the Bureau of Indian Standards and other codal provisions do not provide the specifications for use of recycled products in the construction activities. Central Pollution Control Board has estimated current quantum of solid waste generation in India to the tune of 48 million tonnes per annum out of which, waste from construction industry only accounts for more than 25%. It is estimated that approximately, 40% of the generated waste portion globally originates from construction and demolition of buildings. An investigation conducted by the environmental resources limited for European Environmental commission (EEC) envisages that there will be enormous increase in the available quantities of construction and demolition concrete waste from 55 million tonnes in 1980 to 302 million tonnes by the year 2020 in the EEC member countries. There is increasing demand and interest in aggregates from non-traditional sources such as from industrial by-products and recycled construction and demolition (C&D) wastes. Many countries have directed on recycling schemes for construction and demolition wastes to avoid dumping in landfill, as suitable landfill sites are becoming scarce particularly in heavily populated countries. The American Concrete Institute (ACI) has focused on the removal and reuse of hardened concrete whereas the Department of Environment and Water Resources in Australia have developed a guide on the use of recycled concrete and masonry materials. Recycling of Construction and Demolition Wastes has long been accepted to have the possibility to conserve natural resources and to decrease energy used in production. In some countries it is a standard substitute for both construction and maintenance, particularly where there is a scarcity of construction aggregate. Thus, the use of recycled aggregate concrete is need of the hour for the sustainable development of society with savings in natural resources and materials which are depleting at quite an alarming rate.

Foundry sand is high quality silica sand which is a by-product of ferrous and nonferrous metal casting industries. Foundry sand is produced by five different foundry classes. The ferrous foundries produce the most of the percentage of sand while aluminium, copper, brass and bronze produce the rest. Ferrous (iron and steel) industries account for approximately 95% of foundry sand used for castings. The automotive industry and its parts suppliers are the major generators of foundry sand. The physical and chemical characteristics of foundry sand depend on the type of casting process and the industry sector from which it originates. The sand is typically used multiple times within the foundry before it becomes a by-product. There are approximately 4500 units of foundry in India, out of which 80% are small scale units & 10% each are medium & large scale units. Industry estimates that approximately 100 million tonnes of sand is used in production annually & out of this 6-10 million tonnes discarded annually. Used foundry sand is a high volume industrial waste that can be more widely reused as an alternative to landfill disposal. It can be used beneficially in concrete production as a fine aggregate replacement.

Fly ash is finely divided residue resulting from the combustion of coal in thermal power plants and is most used pozzolanic material all over the world. It is one of the supplementary cementitious material that reacts with substances in concrete mix to form cementitious compounds. As a result, fly ash can replace a portion of Portland cement in a concrete mix. Around 110 million tonnes of fly ash get accumulated every year at the thermal power stations in India. It is estimated that around 80 plus thermal power stations across the country would produce more than 175 million tonnes of fly ash by the year 2012 and this would require about 40000 hectares of land for the ash disposal. The Ministry of Power, Govt. of India estimates use of 1800 million tonnes of coal every year and 600 million tonnes of fly ash generated by 2031-2032. Only 15-18% fly ash generated is being used productively. A typical value of the cement for the same volume of concrete is 60% of the cost of all of the raw materials. Thus, the cement substitution with fly ash not only saves the construction cost but also saves natural resources such as limestone and coal, which are used for the manufacturing of cement. Fly ash mixed into concrete accounts for approximately 7% of fly ash that is diverted from landfills each year. The production of Portland cement is estimated to generate about 5% of the world's greenhouse gas (GHG) emissions which is reduced to 3.4%, when cement is substituted by fly ash.

It is expected that present study involving the effect of combination of recycled aggregates, foundry sand as a partial replacement of fine aggregate and fly ash as a partial replacement of cement on compressive strength of concrete will be beneficial to the existing construction methodology.
This is a premium article available exclusively for our subscribers.
If you are already a subscriber, please Login
If not, subscribe now and get access to well researched articles & reports on infrastructure construction, equipment & machinery, innovations & technology, project reports, case studies, and more. All this by simply paying just ₹200/- for a month of complete portal access, or a discounted rate of ₹1000/- for a full year of access.
NBM&CW April 2014
Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement & Coolbrook’s RotoDynamic HeaterTM Technology

UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete

Plastic Shrinkage and Cracks in Concrete

Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Dam Rehabilitation With Cutoff Wall for Seepage Control

Dam Rehabilitation With Cutoff Wall for Seepage Control

This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies

Construction Defects Investigation & Remedies

In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.