The concrete is widely used construction material. The main ingredient of the concrete is cement, aggregates, water and admixtures. Due to the varying properties of the materials used in concrete, the design of concrete is not an easy task. The various methods of mix design are applied for determining the qualities & quantity of concrete. The objective of designing a mix is to produce a concrete of required strength, durability and workability as economically as possible. In our country, generally Indian Standard Institution (ISI) concrete design method is preferred and hence has been discussed. The use of Indian standard institution (ISI) concrete design method is illustrated with the aid of an example.

Anil Kumar Nanda
Associate Professor & Head Surya School of Engg. & Tech. Surya World, Rajpura
Jaspal Singh
Professor & Head Civil Engg Department PAU Ludhiana


The selection of suitable ingredients of concrete and determining their relative amounts with the objective of producing a concrete of the required, strength, durability, and workability as economically as possible, is termed the concrete mix design. The proportioning of constituents of concrete is governed by the performance of concrete in the plastic and the hardened states. The concrete cannot be properly placed and compacted If the plastic concrete is not workable. Therefore, the workability of concrete becomes vital.

The compressive strength of hardened concrete depends upon many factors, e.g. quality and quantity of cement, water and aggregates; batching and mixing; placing, compaction and curing. The actual cost of concrete is related to the cost of materials required for producing a minimum mean strength called characteristic strength which is specified by the structure engineer. This depends on the quality control measures, but it is a fact that the quality control adds to the concrete cost. The extent of quality control is often an economic compromise, and depends on the size and type of job. The cost of labor depends on the workability of mix, e.g., a concrete mix of inadequate workability may result in a high cost of labour to obtain a degree of compaction with available equipment. So it is obligatory to resort to mix design for high rise/ strength structures.

Requirements of Concrete Mix Design

The requirements which form the basis of selection and proportioning of mix ingredients are:
a) The minimum compressive strength required from structural point of view.
b) The adequate workability necessary for full compaction
c) Maximum water-cement ratio and/or maximum cement content to give adequate durability for site conditions
d) Maximum cement content to avoid shrinkage cracking due to temperature in mass concrete.

Factors Affecting the Choice of Mix Proportions

The various factors affecting the mix design are:
  • Compressive strength

    It is one of the most important properties of concrete and influences many other describable properties of the hardened concrete. The mean compressive strength required after 28 days, determines the nominal water-cement ratio of the mix. The other factor affecting the strength of concrete are age, cured and degree of compaction.
  • Workability

    The degree of workability required depends on three factors i.e. size of the section, the amount of reinforcement, and the method of compaction to be used. For the narrow and complicated section with numerous corners or inaccessible parts, the concrete must have a high workability so that full compaction can be achieved
  • Durability

    The durability of concrete is its resistance to the aggressive environmental conditions. High strength concrete is generally more durable as compared to low strength concrete. When the high strength is not required but the conditions of exposure are severe in such situations, high durability is vital. To meet the durability requirement, the mix design is the necessity.
  • Maximum nominal size of aggregate

    The compressive strength tends to increase with the decrease in size of aggregate whereas the workability of concrete increases with increase in maximum size of the aggregate.
  • Grading and type of aggregate

    The grading of aggregate influences the mix proportions for a specified workability and water-cement ratio. Coarser the grading, leaner will be mixed which can be used. An important feature of a satisfactory aggregate is the uniformity of the grading which can be achieved by mixing different size fractions.
  • Quality Control

    The degree of control can be judged statistically by the variations in test results. The variation in strength results is due to lack of control of accuracy in batching, mixing, placing, curing and testing. The lower the difference between the mean and minimum strengths of the mix lower will be the cement-content required. The factor controlling this difference is called as quality control.
  • Mix Proportion designations

    The common method of expressing the proportions of ingredients of a concrete mix is in the terms of parts or ratios of cement, fine and coarse aggregates e.g. a concrete mix of proportions 1:2:4 means that the mix contains one part of cement, two parts of fine aggregate and four parts of coarse aggregate. The proportions are either by volume or by mass. The water-cement ratio is usually expressed in mass.

Information Required For Mix Design

For the design of concrete mix, the following information is required:
  • Grade of concrete
  • Degree of workability
  • Maximum temperature of fresh concrete
  • Type of cement
  • Minimum cement content
  • Maximum water cement ratio
  • Type of aggregates
  • Maximum nominal size of aggregate
  • Type of admixtures, if required
  • Level of quality assurance
  • Exposure condition
  • Method of placing
  • Degree of supervision

Materials and Methods

ISI Mix Design Method:-
Example: Present investigation includes design of concrete mix (non-air entrained) for medium strength concrete. The guidelines given in various codes like SP: 23-1982, IS: 10262-1982 and IS: 456-2000 has been adopted for mix design of concrete.

Table 1 Coarse aggregate
IS Sieve sizes
Analysis of coarse aggregate fraction (Percent passing) Percent of different fractions Conforming to Table 2 of IS : 383-1970
10mm 20mm I
20 100 94.6 50 47.3 97.3
10 56.2 0.40 28.1 0.2 28.3
4.75 0.60 0 0.3 0 0.3
2.36 0 0      

Table 2 Fine aggregate
Is Sieve sizes Fine aggregate
(Percent passing)
Conforming to grading zone II of Table 4 of IS : 383-1970
4.75 mm 96
2.36 mm 86
1.18 mm 61
600micron 35.5
300micron 23.5
150micron 5.5

Table 3 Adjustment required in water content and sand (Reproduced from IS: 10262-1982: Table 6)
Change in condition Adjustment required in
Water content percent percentage sand in total aggregate
For decrease in water-cement ratio by (0.60-0.50) that is 0.1 0 -1.0
For increase in compacting factor (0.9-0.8) that is 0.10 3 0
For sand conforming to zone II of Table 4 of IS:383 0 0
Total +3 percent -1.0

Table 4 Approximate air content corresponding to nominal maximum size of aggregate (Reproduced from IS:10262-1982: Table 3)
Nominal maximum size of aggregate
Entrapped air, as percentage
of volume of concrete
10 3.0
20 2.0
40 1.0

For the present investigation, it is required to have characteristic compressive strength 40 N/mm2. The compaction factor for the design mix is taken as 0.9. The maximum size of aggregate is 20 mm (angular). Type of exposure moderate and degree of quality control as very good.

Test data for materials: Cement used of 43 grade of OPC,
Company- Ultratech
Specific gravity of cement - 2.975
Specific gravity of aggregates:-
Coarse - 2.63
Fine - 2.62
Water absorption
Coarse aggregate - 0.5 percent
Fine aggregate - 1.0 percent
Free surface moisture
Coarse aggregate - nil
Fine aggregate- nil
Sieve analysis was done & results are given in Table 1 & Table 2, which satisfies the codal requirement of IS: 383-1970

Target mean strength of concrete: Tolerance factor (t) for very good quality control obtained from Table 2 of IS: 10262-1982 is 1.65 and standard deviation is 5.6 (obtained from Table 1 of IS: 10262-1982). The target mean strength for the specified characteristic strength is 40 + 5.6 x 1.65 = 49.24 N/mm2

Selection of water cement ratio: From Figure 1 of IS: 10262-1982, the free water cement ratio required for the target mean strength of 49.24N/mm2 is 0.32. In this study, w/c ratio for all the specimens were kept constant (0.32). This is lower than the maximum value of 0.50 prescribed for moderate exposure.

Selection of water and sand content:- From Table 5 of IS:10262-1982, for 20mm nominal maximum size aggregate and sand conforming to grading Zone II, water content per cubic metre of concrete = 180 kg and sand content as percentage of total aggregate by absolute volume = 25%

For change in values in water-cement ratio, compacting factor and sand belonging to Zone II, the following adjustment is required as given in Table 3

Therefore, required sand content as percentage of total aggregate by absolute volume =25-1=24 percent.

Required water content = 180 + 180 x 3/100=185.40 liters/m3

Determination of cement content:-
Water cement ratio = 0.32
Water= 185.40 liters/m3

From Table 4, for the specified maximum size of aggregate of 20 mm, the amount of entrapped air in the wet concrete is 2 percent. Taking this into account and applying equations:-

V= [W+C/Sc+1/p. fa/Sfa] x1/1000,
V= [W+C/Sc+1/1-p. Ca/Sca] x1/1000
V = absolute volume of fresh concrete, which is equal to gross volume (m3)
minus the volume of entrapped air,
W = mass of water (kg) per m3 of concrete,
C = mass of cement (kg) per m3 of concrete,
Sc = specific gravity of cement,
p = ratio of fine aggregate to total aggregate by absolute volume,
fa, Ca = specific gravities of saturated surface dry fine aggregate and
coarse aggregate respectively.
Sfa, Sca = specific gravities of saturated surface dry fine aggregate and
coarse aggregate respectively.
0.98m3 = [185.4+ 579.375/2.975+1/0.2975xfa/2.62]x1/1000
0.98m3 = [185.4+579.375/2.975+1/0.7025xCa/2.63]x1/1000
or fa = 467.58kg/m3
Ca = 1108.52kg/m3
The mix proportion then becomes as given in Table 5:

Table 5 Proportion of different materials
Water Cement Fine aggregate Coarse aggregate
185.4 liters 579.375 kg 467.58 kg 1108.52 kg
0.32 1 0.81 1.91

Actual quantities required for the mix per bag: The mix is 0.32:1:0.81:1.919 (by mass). For 50kg of cement, the quantity of materials are worked out as below:
Cement = 50kg
Fine aggregate = 40.5kg
Coarse aggregate = 95.5kg
(Fraction I=47.75kg, Fraction II = 47.75kg)
(Fraction I =10mm, Fraction II = 20mm)
For water-cement ratio of 0.32, quantity of water=16 liters
Extra quantity of water to be added for absorption
in case of coarse aggregate, at 0.5 percent by mass = (+) 0.80 liters
Actual quantity of water to be added = 16.0+0.80= 16.80 liters
Actual quantity of sand required after allowing
for mass of free moisture = 40.5 kg
Actual quantity of coarse aggregate required:
Fraction I =47.75-0.385=47.365kg
Fraction II=47.75-0.385=47.365kg
Therefore, the actual quantities of different constituents required for the mix are:
Water: 16.80 kg
Cement: 50.00 kg
Fine aggregate :40.50 kg
Coarse aggregate Fraction I
: 47.365 kg
Fraction II : 47.365 kg


  • It is obligatory to design the mix for high strength concrete.
  • Design mix for a site/construction results in economy.
  • By designing a mix, we can achieve the required compressive strength and workability by consuming minimum quantity of concrete materials.
  • It is suggested that all the contractors/builders should get the design mix done for bringing quality control in construction.

Projects for which mix design was obligatory due to their high strength or/and height.

Illustration of Mix Design of Concrete by ISI Method Illustration of Mix Design of Concrete by ISI Method Illustration of Mix Design of Concrete by ISI Method
World's Tallest Buildings Dubai, d Aates (UAE) to become the world's newest tallest tower. Tallest building in Mumbai

Illustration of Mix Design of Concrete by ISI Method Illustration of Mix Design of Concrete by ISI Method
Modern day bridges Longest Bridge in China, 22 miles


  • Gambhir, M.L.(1992) Concrete Manual, 4th ed., Dhanpat Rai & Sons, DELHI.
  • IS: 456 (2000) Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
  • IS: 10262 (1982) Concrete Mix Design, Bureau of Indian Standards, New Delhi.
  • IS: 8112(1989) 43 Grade Ordinary Portland Cement Specification, Bureau of Indian Standards, New Delhi.
  • IS : 383 (1970) Specification for coarse and fine aggregates, Bureau of Indian Standards, New Delhi.
  • Jain, A.K.(2002) Reinforced Concrete, 6th ed., Nem Chand & Bros. Roorkee.
  • Neville, A.M. (1994) Properties of Concrete technology, 4th ed., Longman Scientific & Technical Essex, U.K.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...