High Performance Concrete Admixtures

High Performance Concrete Admixtures for Improving the Properties of Concrete

Pramod Pathak, Director, Multichem Group, Mumbai.

Admixtures are the ingredients in concrete which are other than the hydraulic cementitious material, water, aggregates or fiber reinforcement that are used as ingredients of a cementitious mixture to modify its freshly mixed, setting or hardened properties and that are added to the batch before or during mixing. Admixtures are usually further defined as a non–pozzolanic (does not require calcium hydroxide to react) admixture in the form of a liquid, suspension or water-soluble solid. Some admixtures have been in use for a very long time, such as calcium chloride to provide a cold-weather setting concrete. Others are more recent and represent an area of expanding possibilities for increased performance. Not all admixtures are economical to employ on a particular project.
High Performance Concrete Admixtures for Improving the Properties of Concrete
Also, some characteristics of concrete, such as low absorption, can be achieved simply by consistently adhering to high quality concreting practices.

Water-reducing admixtures improve concrete’s plastic (wet) and hardened properties, while set-controlling admixtures are used in concrete being placed and finished in other than optimum temperatures. Both, when used appropriately, contribute to good concreting practices. Also, both admixtures should meet the requirements of ASTM C 494, (Table 1).

Water-Reducing Admixtures

High Performance Concrete Admixtures for Improving the Properties of Concrete
Water reducers decrease the amount of mixing water required to obtain a given slump. This can result in a reduction of the watercementitious ratio (w/c ratio), which leads to increased strengths and more durable concrete.

Reducing the w/c ratio of concrete has been identified as the most important factor to make durable, high-quality concrete. On the other hand, sometimes the cement content may be lowered while maintaining the original w/c ratio to reduce costs or the heat of hydration for mass concrete pours.

Water-reducing admixtures also reduce segregation and improve the flow ability of the concrete. Therefore, they are commonly used for concrete pumping applications as well.

Water-reducing admixtures typically fall into three groups: low-, medium- and high-range. These groups are based on the range of water reduction for the admixture. The percent of water reduction is relative to the original mix water required to obtain a given slump (Table 2). While all water reducers have similarities, each has an appropriate application for which it is best suited. Table 3 presents a summary of the three types of water-reducing admixtures, their ranges of water reduction and their primary uses. Their effect on air entrainment will vary depending on the chemistry.

How They Work?

When cement comes in contact with water, dissimilar electrical charges at the surface of the cement particles attract one another, which results in flocculation or grouping of the particles. A good portion of the water is absorbed in this process, thereby leading to a cohesive mix and reduced slump.

Water-reducing admixtures essentially neutralize surface charges on solid particles and cause all surfaces to carry like charges. Since particles with like charges repel each other, they reduce locculation of the cement particles and allow for better dispersion. They also reduce the viscosity of the paste, resulting in a greater slump.

High Performance Concrete Admixtures for Improving the Properties of Concrete
Table 4 presents some of the most common basic materials used for each range of water reducer. Other components are also added depending on the requirement of additional properties of concrete. Some water-reducing admixtures have secondary effects or are combined with retarders or accelerators. This will be discussed later.

Effects on Concrete

Water-reducing admixtures are primarily used to reduce the water-cementitious content of concrete, thus increasing strength. In some cases, they can be used to increase the workability or slump of the concrete providing for easier placement. Mid-range water-reducing admixtures were developed to increase the slump beyond the range available with regular water reducers without the excessive retardation that had been known to occur. High-range water reducers, commonly called superplasticizers, were developed for high-strength and high performance concrete applications.

Superplasticizers, e.g., Multiplast Super can take a 3- inch slump concrete to a 9-inch slump without risk of segregation and without compromising its strength. Many precasters can benefit from the use of a superplasticizer, especially because of its improved high early strength development.

All water-reducing admixtures increase strength development as a result of better dispersion of the cement. This increases the exposed surface area of the cement particles, allowing for more complete hydration of the cement.

Set-Controlling Admixtures

Set-controlling admixtures alter the rate of the cement’s hydration and, therefore, the rate of setting (stiffening) of the paste. Coincidentally, they also may affect the hardening or strength gain after the paste has set. Setcontrolling admixtures include retarding and accelerating admixtures.

Retarding Admixtures

These admixtures, Multiplast R slow down the hydration process. They may also reduce the setting time of cement. Retarding admixtures fall into two categories: regular and extended-set. Regular, most commonly referred to as just “retarders,” are used to place concrete in hot climates when long travel times are expected or, in case of emergency, when placement is delayed. They are also commonly used for mass concrete pours to prevent cold joints.

Extended-set control admixtures are those used to delay hydration for many hours or even days. These are usually a twocomponent admixture system. The first component is a retarder (stabilizer) which delays the setting of concrete. The second component is an accelerator (activator) which overcomes the retarder. The concrete typically reaches initial set in a few hours after the activator is applied.

How they work Retarders essentially slow early hydration by reducing the rate at which tricalcium silicate (C3S) reacts with water. Furthermore, retarders slow the growth of calcium hydroxide crystals. Both reactions develop the early setting and strength gain characteristics of paste. The effect remains until the admixture is incorporated into the hydrated material, thereby removing it from the solution and allowing for initial set to occur. The duration of retardation is based on the dose and chemistry of the retarder, cement composition, temperature and the time it was added to the mix.

Accelerators

These admixtures increase the cement’s rate of hydration. Multiplast ACC are designed to increase the rate of hydration of C3S, thereby increasing early strength. There are two types of accelerators: rapid and normal.

Rapid accelerators can set concrete in minutes and are used in shotcreting applications, to make repairs against hydrostatic pressure or when very rapid setting is required. These are typically not used in precast concrete applications.

Standard or normal accelerators are used to speed up construction in cold-weather concreting conditions; however, it is important to note that they are not antifreezing admixtures.

Effect on concrete: Both retarders and accelerators seem to have negligible effects on air entrainment. However, when water-reducing agents are included, such as lignosulfonates, some air may be entrained.

Retarders tend to reduce one-day strengths and usually increase later-age strengths . Retarders may also increase slump loss and cause an early stiffening of the mixture, even though the strength gain has been delayed. Retarders tend to lose their effectiveness as concrete temperature increases. They also tend to increase the plastic shrinkage.

Accelerators typically increase early strengths. However, laterage strengths may be reduced relative to the same concrete without the accelerator. They also tend to increase early-age shrinkage and creep rates, but tests have shown that ultimate values seem to be unaffected.

Combinations

Some admixture chemistries provide for a combination of effects such as water reduction with retardation or acceleration. Advantages of this include reducing the number of admixtures that have to be stored and added to the concrete; less admixture incompatibility; and cost savings. Disadvantages include less flexibility and limited use when an accelerating or retarding effect is not desired. ASTM C 494 lists specifications for these combination admixtures.
NBM&CW Febuary 2008
Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

BigBloc Construction an emerging leader in AAC Block

BigBloc Construction an emerging leader in AAC Block

Incorporated in 2015, BigBloc Construction Ltd is one of the largest and only listed company in the AAC Block space with an installed capacity of 8.25 lakh cbm per annum. The company’s manufacturing plants are located in Umargaon

Read more ...

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Decarbonizing Cement Industry: Sustainable & Energy-Efficient Measures

Dr. L R Manjunatha (VP), Manoj Rustagi (Chief Sustainability & Innovation Officer), Gayatri Joshi (ASM), and Monika Shrivastava (Head of Sustainability) at JSW Cement Limited, discuss new approaches for Decarbonizing the Cement

Read more ...

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete Rheology: Technology to Describe Flow Properties of Concrete

Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

Amazecrete ICRETE: Making Concrete Economical & Durable

Amazecrete ICRETE: Making Concrete Economical & Durable

ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.