Developing a Corrosion Resistant RCC Structure

Samir Surlaker, Director, Assess Build Chem Private Limited
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement.

Along with the thickness (quantity) of cover, the porosity of concrete cover (quality), is of utmost importance. Lower the porosity, greater the durability of the structure. To reduce porosity, compaction must be done properly. Even the water cement ratio must be taken care of. This is because more the water cement ratio, more is the porosity, and more vulnerable will be the structure for attacks from environmental impacts. But, if we reduce the water cement ratio, workability gets affected. Therefore superplasticizers will be needed. In addition to this, proper curing is needed to reduce shrinkage and cracking. So, for durable RCC, attention must be given to the quality, quantity, and curing of cover.

One option in such cases is to use self-compacting concrete. Self-compacting concrete gets compacted under its own weight and minimizes porosity, thereby decreasing the chances of corrosion. These concretes flow around the reinforcement, without creating water lenses and have better compressive strength. This ensures that in the case of a high strength concrete cube, the aggregates themselves get crushed. Usually, when a concrete cube is crushed for testing, the aggregates get separated from the matrix. Adding SCMs like silica fume is used to ensure proper gradation and thereby reduce porosity to the minimum possible.

Admixtures
Integral waterproofing admixtures help close capillaries in the concrete by crystallization. Crystallization continues for a long period of time as water enter the concrete and has a secondary reaction to form crystals. So as time passes, the porosity decreases. Pore volume is minimized by the pore blocking effect of growth of crystals. The porosity in usual good quality lab concrete [Average M30 concrete] is 12-14% at 28 days, whereas a high-performance concrete is expected to have a porosity of 8-10%. This crystalline material can reduce the porosity to about 4 - 6%.

Other durability enhancing admixtures include corrosion inhibiting admixtures which should be used for concreting in underground conditions, which is done using tremie pipes.

Admixtures cannot make bad concrete good; they can make good concrete better. Hence, ensure that you have a good mix design and then use the admixture. An admixture handbook developed by the Indian Concrete Institute gives guidance on the usage of admixtures as per site requirements in different geographic locations and exposure conditions. For example, a structure in Goa will face different kinds of exposure conditions as compared to a structure in the north-eastern region of India. Locations can be segregated into No Risk, Carbonation, Chlorides from sea water and from sand/mixture, Freeze/Thaw, Chemical Attack, Abrasion, etc.

Corrosion Factors
Corrosion due to carbonation is usually due to the formation of carbonic acid, reducing the pH of the RCC structure. The corrosion products formed due to this action, occupies a volume about 5 times more than its original volume of the reinforcement, leading to tensile stresses in the concrete. If the corrosion is due to chlorides, then it leads to pitting corrosion, which reduces the diameter of the reinforcement and can lead to a formation of hinge at the location of maximum bending moment. This kind of corrosion is far more dangerous because the rate of deterioration is very steep.

Corrosion involves chemical reaction and electrical conduction, which occur in two stages: initiation stage and the propagation stage (Fig. 1).

Developing a Corrosion Resistant RCC StructureFigure 1: Rate of Corrosion

As described in Fig.1, the rate of corrosion is very steep in the propagation period and can lead to a significant level of damage in a very short time, and to avoid it we can use anti-carbonation coatings.

As De Sitter’s law of Fives states, “If maintenance measures are neglected, the repairs, when they become essential, can cost 5 times that of the maintenance costs”.

These days, ultra-high-performance concrete is promised by some companies saying that it can last for 1000 years. But the question is whether we need such a concrete, rather, we need to use economically viable options for the foreseeable 100 to 150 years or so.

Protecting Steel Reinforcement in Concrete
Steel quality in concrete can be protected by 5 kinds of protection:
  • Passivation: If the concrete is such that it has a pH of 12.5, the reinforcement gets automatically protected.
  • Alkaline slurry can be used as it enhances the alkaline environment around the bar and passivates it.
  • Zinc-Rich coatings on rebars sacrifices itself to protect the reinforcement.
  • Sacrificial Anode can be connected to the rebar to protect the reinforcement [electro-chemical / impressed current method of corrosion protection].
  • Encapsulating the rebars with a barrier coating [epoxies or rust convertors] insulates it from electrical charge, thus saving it from corrosion.
These days, rust converters are also available which can convert the corroded surface within 20 minutes. These are highly useful when the life of corroded steel bridges is to be enhanced. It neutralizes the corrosion process, reacts quickly with the rust, and transforms iron oxide into a stable passive layer, giving full protection against corrosion, salts, acid, and alkalis.

Coatings
Protect your Concrete and the Steel will take care of itself! Coatings should be such that they should fill all the pores and be able to exhibit the following properties:
  • Resistant to carbonation
  • Allow for diffusion of water vapour – should be breathable
  • Have crack bridging Characteristics
  • Resistant to weathering due to UV rays
  • Have waterproofing characteristics
Usually, two coats of epoxy as protective do not allow crack bridging. It breaks under cyclic loads and under the influence of UV and is not breathable. The coating must be like human skin; it should allow water to evaporate and be waterproof at the same time. Anti-carbonation coatings need to have this quality and must be like a microporous net which should create a barrier for carbon dioxide and chlorides. Governmental Organizations such as the Indian Roads Congress advocates protection of structures with Anti-Carbonation Coatings and has stipulated the specifications for them in IRC: SP-80. Such anti-carbonation Coatings are very useful for structures built in coastal areas like the bridges, hotels, and churches in Goa, which have already adopted these coatings. Properly formulated anti-carbonation coatings with approx. 300-micron thickness can provide protection equivalent to 74 cm of M30 grade concrete.

Residual Life of Existing Structure
Merely three non-destructive tests are not sufficient for evaluating the strength of concrete or its residual life. In fact, all the necessary tests, including the semi destructive test, need to be done as they all have their own importance and help in determining the life expectancy of the structure. There is specialty testing for chloride content and for structures in zones around marine areas. For example, a bridge pier in a water body will have 3 cores: one under the water, another in the alternative dry and wet zone, and the third on the top area.

Service Life Modelling uses a platform using stipulated data collection and a probabilistic approach for determining the risks of corrosion. Fig. 2 shows the degradation curves given by modelling platform by assuming different scenarios.

Developing a Corrosion Resistant RCC StructureFigure 2

The graph shows the impact of chlorides in concrete under different scenarios, viz.; if no repair is done, if membrane or overlay repairs are done or if patch work is done as per the simulation software.

About 25% owners are usually unhappy after 5 years or repairs and 75% are unhappy after 10 years of repairs, so, durability of repairs must be of utmost importance.

Developing a Corrosion Resistant RCC StructureFigure 3: Mortar strength for structural repair - Source: EN 1504
EN 1504 provides a complete guide for definitions, requirements, quality control and conformity for protection and repair of concrete structures. It can be used by planners, applicators, manufacturers, official bodies, and institutes. EN 1504 provides guideline minimum specifications for materials relating to concrete repair. It covers concrete replacement mortars, corrosion protection methods, Injection Grouting, Structural Strengthening, Concrete Protection and more. It also provides guidelines on site usage, quality control and conformity along with selection criteria. For e.g. It simplifies the requirements in only 4 types of mortars as shown in Fig.3.

Conclusion
Rehabilitation of RCC structures is a key aspect of maintaining them. In this case it is imperative that the owners and specifiers understand the extent of the damages and the correct solutions to be used in rehabilitating the structures. Once the process is understood, the correct systems and methodologies can be used. This article coveres various methods and materials available in the field today. A combination of various systems can address any rehabilitation scenario. International codes such as EN 1504 can be referred to as they provide excellent step-by-step guidelines to address various defects.

(The above information is sourced from the online technical discussion Design Life and Life Expectancy of RCC structures with respect to the deteriorating effect of environmental agents like chlorides and sulphates on the structure. The webinar was conducted by SQVe consultants).
Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Carbon Neutrality in Cement Industry A Global Perspective
Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions. Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...