Sanjeev Kumar Verma, Research Scholar, Civil Engineering Dept., Univ. Institute of Technology, Rajiv Gandhi Technological Univ., Bhopal, Sudhir Singh Bhadauria, Director, G.S. Institute of Technology and Science, Indore, Madhya Pradesh, India, and Saleem Akhtar, Professor and Head, Civil Engineering Dept., Univ. Institute of Technology, Rajiv Gandhi Technological Univ., Bhopal.

Introduction

Failure of structures was almost non-existent in the past. Structures were generally known for their durability, soundness, and stability. But Due to lack of performance of building structures in last few decades, there has been a growing interest in the field of durability and service life of structures.

Degradation and deterioration of structures caused by physical and chemical damage results in the decrease in performance with time, physical damage occurs due to fire, abrasion or expansion and contraction stresses while chemical damage occurs due to harsh environment. Lack of durability of concrete structures or initiation of cracking has been caused mainly due to exposure to harsh environment, which results in degradation of structures as shown in fig. 1.

Reinforced Concrete Structures
Figure 1: degraded concrete structures

Several researchers have performed studies to indentify the causes of deterioration of RC structures, Wang and Liu (2010) identified change in bond strength, loss of concrete cover in tensile zone and/or reduction of concrete cover in compressive zone as the major cause of deterioration of RC structures. Crack growth due to corrosion products expansion has been considered as an important factor for the durability of structures by Benin et al. (2010). According to Mitra et al. (2010) repair and maintenance planning of concrete structures is based on the conditional states of concrete categorized by the assessment of conditions such as rusting and cracking, delamination, loss in steel section, workmanship, carbonation and chloride contents. From the analysis performed by Bastidas-Arteaga et al. (2008), the failure probability of bridge girders depends highly on the corrosion rates, surface chloride concentration and the traffic frequency. Ganjidoost et al. (2010) studied the sustainability and durability of concrete structures in corrosive environmental conditions mostly in marine environments; they proposed that W/C ratio must be between 0.3 and 0.5 to resist against corrosion and permeability. According to Song and Saraswathy (2007) corrosion of rebars is the major deterioration process, and reviewed the methods for monitoring the corrosion of reinforced concrete structures including electrical, electrochemical, harmonic, ultrasonic pulse velocity, X-ray and visual methods. Melchers et al. (2007) considered the influence of corrosion and its initiation coupled with applied loads, and impact of internal damage for determining structural deterioration of R.C. Beams under saline environment corrosion. Berto et al. (2007) proposed that main effects of corrosion are bond deterioration, reduction in steel cross sections, cover spalling, and concrete damage or cracks. Song and Kwon (2007) considered carbonation as the major cause of deterioration and found during carbonation process permeability of concrete changes due to change in capillary porosity. Durham et al. (2007) inspected several precast concrete bridges to identify the causes of deterioration, information collected includes concrete deterioration, environmental humidity, reinforcing steel corrosion, asphalt wearing surface, drainage and bridge site photos. And concluded that deterioration was mainly due to longitudinal cracks (caused corrosion of steel bars), and flexure cracks (overloading of live-loads). Chong and Low (2005) analyzed the defects in construction facilities at both construction and occupancy (after 2 to 6 years) and found that main causes of defects are design, workmanship, material, lack of protection and maintenance. According to Amleh and Mirza (2004) chloride content, quality of concrete cover and electrical resistivity of concrete have significant effects on the rebar corrosion. Dias and Jayanandana (2003) performed experiments to measure depth of carbonation, concrete cover, chloride content and sulfate attack, for the assessment of durability. Karokouzian et al. (2003) studied several swimming pools and found that ASR as the main cause of cracking and deterioration. According to Snathanam et al.(2001) sulfate attack is one of the major cause of deterioration and estimating the remaining service life of structures exposed to sulfate attack is important in order to develop repair and maintenance schedule.

From the above literature it has been recognized that, Strength as well as environmental conditions to which structure is exposed over is also important for the service life of RC structures. So, it is important to understand various deterioration mechanisms of RC structures. Major deterioration mechanisms of RC Structures identified are:

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

FAIRMATE manufactures a complete range of construction chemicals and provides cost-effective solutions and world-class services to the Speciality Construction Chemicals Industry in alliance with leading

Read more ...

Corrosion of concrete is a major issue and many concrete structures on adverse environment have experienced unacceptable losses in terms of serviceability, ultimately requiring replacement

Read more ...

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability

Read more ...

Cement concrete is the most consumed materials on the earth next only to water. The ingredients used in preparing concrete are not sustainable. The ingredients are responsible for causing global warming. The most

Read more ...

India’s ready-mix concrete (RMC) market is projected to witness a 7-9% CAGR in the next five years. This growth is predominantly driven by the increased investments in the development of infrastructure throughout

Read more ...

Concrete, being a physical mixture of cement, aggregate (sand and crushed rocks), and water, is the key construction material across the world. There is now a huge demand for infrastructure which has increased concrete

Read more ...

There is a need for technologically advanced concrete admixtures for the ready-mix industry that meet industry codes and meet or exceed the demands of challenging construction applications and adverse placement conditions

Read more ...

High Performance Concrete (HPC) is seeing major applications in the field of civil engineering constructions such as long-span bridges, tunnels, high-rise buildings, huge complexes, highway pavements, and more, since

Read more ...

Concrete being the second largest consumed material after water needs attention towards sustainable construction with an increase in infrastructure. The world is moving towards innovative techniques and methodologies

Read more ...

Co-processing of waste in the cement industry is an advanced and innovative recovery process whereby energy is recovered, and the non-combustible part of the waste is reused as raw material.

Read more ...

Traditional masonry units are not sustainable and eco friendly due to consumption of fuel or cement. It is essential to find sustainable alternatives. This paper reports about preparation of geopolymer bricks, masonry

Read more ...

Geo-polymer mortar (GPM) is proven for its strength, durability and sustainability [2 & 3]; strength of GPM is a function of alkaline to binder ratio, and has an adverse effect on consistence properties of mortar

Read more ...

Comparison of Reinforced and Pre-Stressed Concrete Building Frames This article discusses pre-stressing of concrete to get lighter and slender beam sections for six different four storied concrete building frames of different spans/lengths by the application of post-tensioning

Read more ...

Ready mix concrete (RMC) is the first choice for projects requiring concrete. The term ‘ready mix’ is used to describe a process where concrete is pre-made at a plant and delivered in batches to job sites. It is a convenient

Read more ...

When we talk of Primers that are applied before the paint work, what comes to mind are the Acrylic Primers. However, since the last few years, White Cement-based Primers are gaining popularity amongst the construction

Read more ...

Chemistry is truly relevant for concrete because chemistry controls the life/durability of concrete. It explains why cement hardens and the interaction between cement and its environment. Dr. S.B.Hegde at Udaipur Cement Works

Read more ...

Concrete is considered the world’s most versatile, durable and reliable construction material, next only to water. It is the most consumed material requiring large quantity of cement, fine aggregates, course aggregates

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.