Sanjeev Kumar Verma, Research Scholar, Civil Engineering Dept., Univ. Institute of Technology, Rajiv Gandhi Technological Univ., Bhopal, Sudhir Singh Bhadauria, Director, G.S. Institute of Technology and Science, Indore, Madhya Pradesh, India, and Saleem Akhtar, Professor and Head, Civil Engineering Dept., Univ. Institute of Technology, Rajiv Gandhi Technological Univ., Bhopal.

Introduction

Failure of structures was almost non-existent in the past. Structures were generally known for their durability, soundness, and stability. But Due to lack of performance of building structures in last few decades, there has been a growing interest in the field of durability and service life of structures.

Degradation and deterioration of structures caused by physical and chemical damage results in the decrease in performance with time, physical damage occurs due to fire, abrasion or expansion and contraction stresses while chemical damage occurs due to harsh environment. Lack of durability of concrete structures or initiation of cracking has been caused mainly due to exposure to harsh environment, which results in degradation of structures as shown in fig. 1.

Reinforced Concrete Structures
Figure 1: degraded concrete structures

Several researchers have performed studies to indentify the causes of deterioration of RC structures, Wang and Liu (2010) identified change in bond strength, loss of concrete cover in tensile zone and/or reduction of concrete cover in compressive zone as the major cause of deterioration of RC structures. Crack growth due to corrosion products expansion has been considered as an important factor for the durability of structures by Benin et al. (2010). According to Mitra et al. (2010) repair and maintenance planning of concrete structures is based on the conditional states of concrete categorized by the assessment of conditions such as rusting and cracking, delamination, loss in steel section, workmanship, carbonation and chloride contents. From the analysis performed by Bastidas-Arteaga et al. (2008), the failure probability of bridge girders depends highly on the corrosion rates, surface chloride concentration and the traffic frequency. Ganjidoost et al. (2010) studied the sustainability and durability of concrete structures in corrosive environmental conditions mostly in marine environments; they proposed that W/C ratio must be between 0.3 and 0.5 to resist against corrosion and permeability. According to Song and Saraswathy (2007) corrosion of rebars is the major deterioration process, and reviewed the methods for monitoring the corrosion of reinforced concrete structures including electrical, electrochemical, harmonic, ultrasonic pulse velocity, X-ray and visual methods. Melchers et al. (2007) considered the influence of corrosion and its initiation coupled with applied loads, and impact of internal damage for determining structural deterioration of R.C. Beams under saline environment corrosion. Berto et al. (2007) proposed that main effects of corrosion are bond deterioration, reduction in steel cross sections, cover spalling, and concrete damage or cracks. Song and Kwon (2007) considered carbonation as the major cause of deterioration and found during carbonation process permeability of concrete changes due to change in capillary porosity. Durham et al. (2007) inspected several precast concrete bridges to identify the causes of deterioration, information collected includes concrete deterioration, environmental humidity, reinforcing steel corrosion, asphalt wearing surface, drainage and bridge site photos. And concluded that deterioration was mainly due to longitudinal cracks (caused corrosion of steel bars), and flexure cracks (overloading of live-loads). Chong and Low (2005) analyzed the defects in construction facilities at both construction and occupancy (after 2 to 6 years) and found that main causes of defects are design, workmanship, material, lack of protection and maintenance. According to Amleh and Mirza (2004) chloride content, quality of concrete cover and electrical resistivity of concrete have significant effects on the rebar corrosion. Dias and Jayanandana (2003) performed experiments to measure depth of carbonation, concrete cover, chloride content and sulfate attack, for the assessment of durability. Karokouzian et al. (2003) studied several swimming pools and found that ASR as the main cause of cracking and deterioration. According to Snathanam et al.(2001) sulfate attack is one of the major cause of deterioration and estimating the remaining service life of structures exposed to sulfate attack is important in order to develop repair and maintenance schedule.

From the above literature it has been recognized that, Strength as well as environmental conditions to which structure is exposed over is also important for the service life of RC structures. So, it is important to understand various deterioration mechanisms of RC structures. Major deterioration mechanisms of RC Structures identified are:

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

As every one ton of Cement (OPC) produced, emits 0.96 tons of CO2, there is an urgent need to promote blending materials (ex. GGBS &PSC) and screened slag, to achieve lower CO2 emissions, reduce greenhouse gas effect, reduce exploitation

Read more ...

In most of the developing countries, demand for steel for use as a reinforcing material is increasing day by day. However, when steel is in short supply, one can consider bamboo as an alternative material for reinforcement

Read more ...

There is high demand for white cement in countries with hot climates, as more heat is reflected from white concrete surfaces as compared to standard grey concrete. As a value-added product, white cement is becoming

Read more ...

Garry Martin, Director - Major Projects, Low & Bonar Construction Fibres, presents a new examination of the benefits of micro fibres in both the plastic and hardened state of concrete and their contribution to increased sustainability.

Read more ...

An integrated material and structural design strategy of strength through durability is the need of the hour since structures are designed for ductility and structural integrity. Dr. S. B. Hegde, President – Manufacturing

Read more ...

The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

FAIRMATE manufactures a complete range of construction chemicals and provides cost-effective solutions and world-class services to the Speciality Construction Chemicals Industry in alliance with leading

Read more ...

Corrosion of concrete is a major issue and many concrete structures on adverse environment have experienced unacceptable losses in terms of serviceability, ultimately requiring replacement

Read more ...

Cement is the most used industrial commodity required for development, but it is also responsible for high GHG emissions; so there is a need to create a balance between the nation’s growth and environment sustainability

Read more ...

Cement concrete is the most consumed materials on the earth next only to water. The ingredients used in preparing concrete are not sustainable. The ingredients are responsible for causing global warming. The most

Read more ...

India’s ready-mix concrete (RMC) market is projected to witness a 7-9% CAGR in the next five years. This growth is predominantly driven by the increased investments in the development of infrastructure throughout

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.