Design and Construction of Composite Structures
Arun Nadig, Director, Nadig Consulting, presents two award-winning projects in composite construction technique for modern office spaces, which have been duly recognised by the Construction Industry Development Council (CIDC) for their design and execution.

Composite construction is fast gaining acceptance in the non-residential multi-storey building sector of India. Its success is mainly due to the strength and stiffness achieved, with minimum use of materials.

The reason why composite construction is considered so good can be expressed in a simple way: concrete is good in compression and steel is good in tension. Combining these two materials structurally enhances their strengths, which can be exploited to create a highly efficient and lightweight design.

The reduced weight of the composite elements has a knock-down effect by reducing the forces in the elements supporting them, including the foundations. Composite systems also offer benefits in terms of speed of construction. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope.

Case Study 1: Prestige Trade Towers

This project is located in the central business district of Bangalore, close to the state legislature and main road leading to the airport and northern Bangalore. It is subject to heavy and frequent VIP traffic movement due to which, access to concrete trucks during normal working hours is severely restricted. The presence of high-end apartments and residences, and a major school in the vicinity posed further restrictions in using conventional construction techniques.

Site constraints for design of basements: The Towers have 2 deep basements with 5-level stacked car parking, 3 levels of retail floors, and 21 office floors, and an overall height of 117m. The need for a large number of car parks for the office tower necessitated pit parking in the lower basement, in addition to 2-level stack parking above this. The upper basement too consisted of a 2-level stack parking. As a result, the depth of excavation to the bottom of the raft was approximately 11m. Presence of ground water at a depth of 6m compounded the challenge of keeping the excavation dry for construction work.

Extensive shore piling system with whaler beams and struts with sacrificial piles were provided as part of the shoring works. Both deep well dewatering and vacuum dewatering systems had to be adopted because of the amount of ground water encountered.

Design of the structural system: It was decided at the outset with the concurrence of the building owners and other stakeholders that composite construction would be the ideal solution for the superstructure for the following reasons:
  • It would mitigate issues of large concrete pours
  • Construction timelines could be speeded up leading to early access to the offices
  • Lighter structure leading to lighter foundations considering the subsoil conditions
  • Construction activity at multiple levels during the execution of the works
Structural design: The design team decided that the structural system should be designed ensuring that a strong reinforced concrete core would be used to withstand all lateral forces arising from seismic activity and wind, and the composite construction of steel columns and beams would be primarily taking the gravity loads.

The lift banks, toilets and staircase shafts proved to be ideal for this concrete core envisaged. The architectural need for a minimum 3.0m floor to ceiling clearance after incorporation of all services meant that a ‘ flat slab like ‘ solution had to be provided.

Two systems were considered for the composite construction; the first option was slightly more sophisticated comprising:
  • Concrete filled hollow tubes for the columns
  • Asymmetrical floor beams with wider bottom flange
  • Deep Deck sheeting with structural screeding
In the other option the system consisted of:
  • Steel columns with welded steel plates encased in concrete
  • 3-plate beam sections welded using submerged arc welding technique
  • 1.0 mm thick decking sheets 80mm high at the crest sitting on top of the floor beams with a structural concrete topping both for fire protection and composite action.
After careful deliberations, assessment of costs, availability of materials, etc. it was decided to adopt the second option.

Nadig Consulting

Construction: The construction sequence adopted was to ensure that the lateral core would commence first and would be at least 4 to 6 levels ahead of the structural steel framework. The sequence of works would be as follows:
  • Construct the RCC core using self-climbing shuttering
  • Raise structural steel columns for two levels
  • Fix main beams and secondary beams
  • Place decking sheets and concrete and encase columns in concrete
  • Carry out cementitious fireproof coating on the exposed beams.
Despite the numerous constraints at site, composite construction proved to be successful, and the completed structure is now considered as one of the iconic buildings in the city.

Case Study 2 Bagmane Lynx

This prestigious office building located in the heart of the IT belt on the Outer Ring Road in Bangalore, is a microcosm of the multiple structural systems that have been successfully amalgamated to produce landmark office buildings. The structure consists of 2 basements housing car parks and MEP equipment, a 4-level arrival space, and 14 levels of office floors.

Bagmane Lynx

Design - V columns: The basements and the office spaces are generally designed as conventional flat slab systems with periphery beams. A strong central core of lift and stair shafts provide lateral stability to the building. A specific architectural requirement of providing an unconventional arrival space by means of V columns is the unique design feature in this structure.

The V columns are concrete filled tubes springing from a pedestal sitting atop the basement and podium columns. The V columns then terminate onto a heavy structural steel transfer beam which supports 7 levels of office space above.

The structural system was modelled and fabricated using state of the art software, resulting in optimised cutting lengths and minimal wastage. An elaborate testing and quality assurance procedure ensured the quality control required.

Bagmane Lynx

Construction: The reinforced steel bar arrangement using couplers, extension of the steel tubes fabricated in lengths of 6m and transported to site, were a challenge.

A collaborative effort with the specialist vendor along with the design team led to successful completion of the project and within the specified time period. Temporary towers were required to be constructed to facilitate extension of the columns. A conventional concrete deck slab at the fifth level was finally poured to connect it with the reinforced concrete flat slab system.
Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...

Low Fines, Low Viscosity, Self-Consolidating Concrete for Better Impact on CO2 Emissions
Production of low fines SCC with increased robustness in a highly flowable, less viscous condition meeting true SCC specifications is now a reality to help realise the architect’s and engineer’s dream of various complex profiles and shapes in

Read more ...

Methods & Factors for Design of Slabs-on-Grade
Sunitha K Nayar, gives the grouping of slabs-on-grade based on the design philosophies and a brief overview of the different design methods, the commonalities between design strategies in terms of the input parameters, assumed and estimated parameters, and the

Read more ...

FIBERCRETE®: Synthetic Fibers for Concrete Reinforcement
Kalyani Polymers is offering world-class made-in-India Synthetic Micro & Macro Concrete Fiber Products for the Construction Industry under the brand name FIBERCRETE®. Concrete is an integral part of any construction project, it can be roads, tall structures

Read more ...

Climate Control Concrete
Leading cement and concrete maker ACC has unveiled a revolutionary thermal insulating climate control concrete system in India. Sridhar Balakrishnan, MD & CEO, ACC Limited, discusses its attributes, applications, and benefits for home builders, architects

Read more ...

Innovations in Crack Bridging with Self-Healing Bacteria in Concrete
Dr. Manjunatha L R, Vice President - Direct Sales & Sustainability Initiatives, and Raghavendra, Senior officer, JSW Cement Limited, discuss bacterial concrete that can meet the requirements for strength, durability, and self-healing of cracks.

Read more ...

Sustainable Development Through Use of Self-Curing Concrete
Dada S. Patil, Assistant Professor, Civil Engineering Department, AIKTC, Panvel, Navi Mumbai, Maharashtra; Dr. S. B. Anadinni, Professor & Associate Dean (Core Branches), School of Engineering, Presidency University, Bengaluru; and Dr. A. V. Shivapur, Professor

Read more ...

Developing a Corrosion Resistant RCC Structure
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Quest for Higher Strength Concrete From HSC to UHPC
Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Modelling Methods for Protection of RCC Structures
Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Bajaj Reinforcements LLP - Introduces Fibre Tuff heavy-duty synthetic fibres that offer a range of benefits to concrete
Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Use of Headed Bars in Reinforced Concrete Design
Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...

Innovation easy, effective and economical tool for asset creation
Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Reactivity of Alite and Belite towards Sustainability of Concrete
Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Innovative, Economic, Durable and Sustainable Concrete to last for +100 years of service life
Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

Nanospan India Pvt Ltd
The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc: Building, Cementing & Supporting
Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Dextra Group
Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Ferrochrome Ash Based Geopolymer Concrete
Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.
Click here to subscribe.