Study on Cohesive Soil and Fly Ash Mixture As Reinforced Earth Retaining Wall Filling Material

Vashi, Jigisha M, Research Scholar, Desai, A.K. Associate Professor, Solanki, C.H. Associate Professor, AMD, SVNIT, Surat.

The performance of filling material and its interface friction properties with the geosynthetics would directly influence the application properties of the geosynthetics reinforced earth retaining walls. Through Triaxial test experiments performance include studies of shear parameters of cohesive soil and fly ash mixture in this paper. The results indicate that the mixture of cohesive soil and fly ash have higher strength and rigidity & good interface friction. The technical performance of the mixture conform to the requirements of geosynthetics reinforced earth retaining walls, so it can be used as the filling material of geosynthetics reinforced earth retaining walls in region where specified graded sand is not available.

Introduction

Because of the good engineering performance, a large number of reinforced earth retaining walls have been constructed throughout the world. Compared with the traditional gravity earth retaining walls, geosyntheric reinforced earth retaining walls have better engineering characteristics of light deadweight, beautiful shape, construction convenience etc. Especially on the soft ground, the better performance would be embodied in virtue of their light deadweight.

The national planners in India have put infrastructure development on priority. This has resulted in transport planning, widening of National Highways and new roads in the country. Thus work of Retaining Earth (RE) structures/slopes will be designed in very large numbers over different areas. Thus there is a huge possibility of RE wall being constructed for every 2 Km of 6-4 lane road of NH, State Highways where there is a need of large fill/backfill quantity of sand. But in futures sand is not likely to be a source, so there is a need for use of local waste/fill materials as backfill and hence the present study was taken up.

Filling material’s performances and interface friction properties with the geosynthetics directly influenced the application performances of the geosynthetics reinforced earth retaining walls. The standards used filling materials are cohesion less soil having percentage of fines (<0.08mm) is <15%, free-draining backfill & Soil reinforcement friction factor tan d not = 30o)12. As the filling material of geosynthetics reinforced earth retaining walls, it should have the following engineering properties: (1) good mechanical properties which include the strength and rigidity; (2) better interface friction property with the geosynthetics; (3) the material, better be lightweight.

The shear resistance is function of size, type Undisturbed/Remoulded/ critically weathered, state of drainage in shear, degree of saturation has been studied by many researchers. Following parameters for inorganic cohesive CH soils could be adopted Skempton (1948); Nagaraj (1964); Focht & Sullivan (1969); Stauffer & Wright (1984); Green & Wright (1986); Kulhawy & Mayne (1990); Kayyal & Wright (1991); etc. for preliminary analysis, for compacted soil at OMC & 95% of MDD by Proctor test and observed the range of cohesion of about 100 kPa & angle of internal friction about 20o to 23o for un-drain conditions and cohesion of about 50 kPa & angle of internal friction about 18o for drain condition. Desai, M.D, (1967) studied the expansive CH soil (low to medium) of region has average OMC 20 to 25% and MDD 1.48 to 1.52 g/cc, and this soil remoulded to 95% MDD has Cu = 80 kPa to 100 kPa, Φu = 15 to 18o. Ke Zhao, et al. (2001) studied the performances of saponated residue and added-calcium fly ash mixture in highway application. Desai, N.H (2007) performed box shear test for Fly ash and CH soil in different proportions and showing good results of cohesion in range of 2 to 11 kPa and angle of internal friction in range of 20 to 45 degree.

Through experiments, the technical performances of coshessive soil and fly ash mixture, and the shear parameters for mixture of 80% FA + 20% Cohessive soil & 75% FA + 25% Cohessive soil, were studied. The purpose was to investigate the application properties of the mixture used as filling material of geosynthetics reinforced earth retaining walls.

Experimental Work

The purpose of this experimental work is to review the previous research conducted for region in India having CH soils and combined pertinent data with results from the technical literature to develop guidelines for selection of shear strengths for reinforced cohesive-soil structures.

Soil sample of high plastic clay (CH) and fly ash was collected from GIPCL, Nani Naroli, Kim, Dist. Surat. Physical properties of soil sample were determined by standard lab tests and are represented in Table 1. (Grain size distribution as per IS 2720 Part 4, Specific Gravity as per IS 2720 Part 3 Section I, Liquid & Plastic Limit test as per IS 2720 Part 5, Compaction test as per IS 2720 Part 7, and Free Swell Index test as per IS 2720 Part 40). Physical and chemical properties of fly-ash were also tested and results are presented in Table 1.

Table: 1. Properties of Soil & Fly-ash
Test Physical Properties Chemical Properties of Fly Ash (% content)
Soil Fly-ash
Test 1 Test 2 Test 1 Test 2
% Passing
I S Sieve size in mm 4.75mm 100 100 100 100 SiO2 24.30
2.00mm 100 100 100 100 Al2O3 13.11
1.00mm 97 96 100 100 Fe2O3 17.16
0.425mm 95 95 100 100 TiO2 2.51
0.250mm 95 94 100 100 CaO 27.00
0.075mm 76 75 79 78 MgO 0.32
Specific Gravity 2.497 2.488 2.547 2.526 Na2O 1.05
Liquid Limit Immediate 58 61 44 45 K2O 0.16
LiO2 Nil
After 24 Hrs Soaking - 51 52 SO3 9.50
After 48 Hrs soaking 62 61 LOI (Loss on Ignition) 4.78
Plastic Limit 34 38 NP NP -
Plasticity Index 24 23 -
Standard Proctor Test MDD in kN/m3 16.20 16.10 1.29 1.26
OMC in % 23.5 23.5 32.0 33.0
Free Swell Index in % 50 48 -


For the investigation purpose 80% Fly Ash + 20% Soil mix and 75% Fly Ash + 25% Soil mix was decided. Two different tests namely Triaxial test, (IS 2720: Part 11: 1993/2002) and Permeability (IS 2720 Part 17:1986/2002, falling head method) were carried out for this combination. Specimens were cured for 3 days, 7 days, & 28 days and tested for the said test. Modified proctor test was conducted on 80:20 & 75:25 (F:S) mix proportion. Modified Proctor Test result graph is as shown in Fig.1. Moisture v/s Density relation for Fly Ash: Soil (80:20 & 75:25) ratio mention is given in Table 2.

Table: 2 Moisture-Density Relationships with Mix Proportion
Mix Proportion MDD in kN/m3 OMC in %
80:20 13.89 30
75:25 14.35 30

 

Moisture Density RelationshipFigure 1: Moisture Density Relationship for 80:20 and 75:25 Proportions


Pilot test results of triaxial test of samples, proportion in 80:20 & 75:25 (Flyash: Black soil) with 3 days, 7 days and 28 days currying period at OMC-MDD; at different cell pressure of 0.5 kg/cm2, 1.5 kg/cm2 and 2.5 kg/cm2; and at 1.5 mm/min strain rate. The values of cohesion C and angle of internal friction φ are found out from modified failure envelope of traixial test are finding out for 3 days, 7 day, and 28 days respectively. The summary of the test result are shown in Table 3.

Table: 3. Testing Result
Tests 3 Days 7 Days 28 Days
Triaxial Test - UU Cuu (kPa) Φ(º) Cuu (kPa) Φ(º) Cuu (kPa) Φ(º)
80:20 (F:C) Mix 414 47.02 365 51.13 336 56.36
75:25 (F:C) Mix 388 42 429 39 457 40
Permeability K for
80:20 (F:C) Mix
2.66E-05cm/sec (Falling Head Permeability Test was conducted on 80:20 mix proportion immediately after casting of the sample.)
Permeability K for 75:25(F:C) Mix 1.23E-05 cm/sec (Falling Head Permeability Test was conducted on 80:20 mix proportion immediately after casting of the sample.)

Conclusion

Through systematic experiments, the application performances of cohesive soil and fly ash mixture have been studied and presented in this paper. The main conclusions obtained are summarized below.

(1) The mixture of cohesive soil and fly ash has higher strength, rigidity, and good water stability. (2) Triaxial shear parameters of the mixture of cohesive soil and fly ash are relatively higher & meet normal design parameters of backfill. These indicate better interface friction if it’s used with geosynthetics. (3) The typical test presented, conformed that mix design of (80:20 & 75:25) can be evolved  for a site to provide low cohesion, high  Φ > 30° material for backfill in RE structures.  This requires placement at 2% less than OMC & MDD. (4) The performance of cohesive soil and fly ash mixture conform to the requirement of filling material of geosynthetics reinforced earth retaining walls. So it can be used as a good filling material for geosynthetics reinforced earth retaining walls at site where BS 8006:1995 specified material is not available.

Acknowledgment

Authors wish to express their deepest gratitude and sincere appreciation to Dr. M. D. Desai (Visiting Prof SVNIT) for his constant guidance, dedication, and encouragement. Authors would like to thank Er. H. H. Desai & Er. N. H. Desai (Owner of Unique Research Center) for providing the lab facilities for the experimental work.

References

  • British standard code of practice for “strengthened / reinforced soils and other fills.” BS: 8006-1997.
  • Desai, M.D. (1967), “Experience in Shear Testing for Problems of Earth Dam Foundations & Embankment Materials.” Pre-conference Symposia on Pore Pressure & Shear Resistance of Soils, INS of SMFE, New Delhi.
  • Desai, N.H, (2007), “Experimental Investigation for use of Flyash as a Major Constituent with Clay for Construction of Embankment.” M.Tech Thesis, D.D.University, Nadiad.
  • Focht, J. A., & Sullivan, R. A. (1969), “Two Slides In Over-consolidated Pleistocene Clays.” Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1969, Vol. 2, pp: 571–576.
  • Green, R., & Wright, S. G. (1986), “Factors Affecting the Long Term Strength of Compacted Beaumont Clay.” Research Report 436-1, Center for Transportation Research, The University of Texas at Austin.
  • Kayyal, M. K., & Wright S.G. (1991), “Investigation of Long-Term Strength Properties of Paris and Beaumont Clays in Earth Embankments.” Research Report 1195-2F, Center for Transportation Research, The University of Texas at Austin.
  • Ke Zhao et al. (2001). “A Research on the Performances of Saponated Residue Added-Calcium Fly Ash in Highway Application”. Chinese Journal of Fly Ash Comprehensive Utilization, 14 (1):6-10.
  • Kulhawy, F. H., & Mayne, P. W. (1990), “Manual on Estimating Soil Properties for Foundation Design.” EPRI EL-6800, Research Project 1493-6, Final Report, Cornell University, Ithaca, August.
  • Nagaraj, T.S. (1964), “Soil Structure and Strength Characteristics of Compacted Clay” The International Journal of Soil Mechanics, Geotechnique, No. 2, pp: 103-114.
  • Skempton, A.W. (1964), “Long Term Stability of Clay Slopes” The International Journal of Soil Mechanics, Geotechnique, No. 2. pp: 77-100.
  • Stauffer, P. A., & Wright, S. G. (1984). “An Examination of Earth Slope Failures in Texas.” Research Report 353-3F, Center for Transportation Research, The University of Texas.
  • Vashi, Jigisha M., Desai, A.K., Solanki, C.H., & Desai, M.D. (2010), “Fly Ash as Backfill Material for Reinforced Earth Structures.” National conference on Fly ash/Futuristic Materials in Civil Engineering Construction for Sustainable Development, V.V.Nagar, Anand, India.
NBM&CW April 2011

No comments yet, Be the first one to comment on this.

Advancing Concrete Durability in Coastal and Aggressive Environments

Advancing Concrete Durability in Coastal and Aggressive Environments

Professor (Dr.) S B Hegde provides a thorough examination of the challenges faced by concrete infrastructure in India’s coastal and harsh environments; the impact of salt, humidity, pollution, and extreme weather on concrete durability

Read more ...

Concrete Distress Maintenance & Repair Techniques

Concrete Distress Maintenance & Repair Techniques

Concrete structures deteriorate over time due to environmental factors, leading to issues like cracks and corrosion. Effective repair and maintenance are vital for restoring strength and durability. In this article, Sasanka Dey

Read more ...

Durability and Sustainability of Hardened Concrete

Durability and Sustainability of Hardened Concrete

Concrete is widely used in construction, yet its longevity and sustainability often go unnoticed until signs of premature deterioration appear. To truly understand how to extend its service life, it is crucial to explore the factors

Read more ...

Role of Chemical Admixtures in Enhancing Construction Durability

Role of Chemical Admixtures in Enhancing Construction Durability

“In modern construction, the integration of chemical admixtures is not just an enhancement—it's a necessity. By improving durability, performance, and sustainability, these innovations are shaping the future of infrastructure.

Read more ...

ICrete by Amazecrete: A Game-changer Concrete Additive

ICrete by Amazecrete: A Game-changer Concrete Additive

With the introduction of ICrete, we are pushing the boundaries of concrete technology with solutions that address both performance and environmental challenges. Kowshika V R, Executive Director, Amazecrete

Read more ...

Grinding Aids as Energy Saver in Cement Production

Grinding Aids as Energy Saver in Cement Production

The benefits of using different grinding aids in cement production are improved output, decreased energy consumption, cost reduction, and minimizing the carbon footprint- all of which are steps forward in bringing greater sustainability

Read more ...

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

Thermax Acquires BuildTech to Expand its Footprint in Construction Chemicals

The recent acquisition of BuildTech by Thermax exemplifies a significant trend within the industry towards strategic expansion and enhanced capabilities in construction technologies.

Read more ...

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete By Amazecrete Enhances Strength & Durability of Concrete

Icrete has emerged as a new age material for Concrete Construction given its efficacy in increasing the strength and durability of concrete, bringing value additions and greater profitability to the users.

Read more ...

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

Cement Industry Targets Net Zero with 25% Emissions Reduction by 2030

The Cement Industry is embarking on a Net Zero pathway, aiming for a 25% reduction in CO2 emissions by 2030 and a full decarbonization by 2050, driven by technological innovations, use of alternative raw materials, and circular economy

Read more ...

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Determining Plastic Hinge Length in Precast Seismic Force-Resisting Systems

Plastic hinges form at the maximum moment region of reinforced concrete columns. A reasonable estimation of the plastic hinge length is key to successfully modeling the lateral load-drift response and conducting a proper seismic

Read more ...

Properties and Applications of Geopolymer Masonry Blocks

Properties and Applications of Geopolymer Masonry Blocks

Radhakrishna, Professor and Head, Department of Civil Engineering, RV College of Engineering, Affiliated to Visvesvaraya Technological University, Bengaluru. Block masonry is one of the oldest methods of construction. It is composed

Read more ...

Advancing LC3 Cement Technology for Sustainable Construction in India

Advancing LC3 Cement Technology for Sustainable Construction in India

Dr S B Hegde provides a deep, research-driven analysis of LC3 cement, emphasizing its chemistry, process innovations, global applicability, and success stories, and evaluates its technical advantages, performance, cost savings

Read more ...

Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.