Chloride Diffusion of Concrete on Using GGBS as a Partial Replacement Material for Cement and Without and With Superplasticiser

V.S.Tamilarasan, Research Scholar and Assistant Professor, Department of Civil Engineering, Dr.Sivanthi Aditanar College of Engineering, Tiruchendur and Dr. P.Perumal, Professor & Head, Department of Civil Engineering, Government College of Engineering, Salem

Increase in environmental awareness over the past decade, resulted in increasing attention to individual pollution and waste management control. The use of recycled waste cementitious materials is becoming of increasing importance in construction practice.

In India, we produce about 7.8 million tonnes of blast furnace slag, which is a by-product of steel. The disposal of GGBS as a landfill is a problem, which leads to serious environmental hazards. GGBS can be incorporated in cementitious materials to modify and improve certain properties for specific uses.

An attempt is made to replace partially GGBS for cement in concrete of M20 & M25 grades and study its Chloride diffusion. GGBS is replaced for cement in the level of 10%, 20%, 30%, 40%, 50% and 60%. The study results showed that, with the increase in percentage of GGBS, the Chloride diffusion of concrete decreases. Also it is found that the Chloride diffusion in the M25 concrete is less than M20 concrete.

The partial replacement of GGBS for cement in concrete has great potential economical benefits in all areas of construction industry. The GGBS will also make a significant contribution to sustainable development.

Introduction

In recent years there is an increasing awareness regarding environmental pollution due to domestic and industrial waste. Now pollution control board is formed to regulate environmental degradation due to industrial waste. The development and use of blended cement is growing in Asia, mainly due to considerations of cost saving, energy saving, environmental protection and conservation of resources.

Ground Granulated Blast furnace Slag is a by-product obtained in the manufacturing of pig iron in the blast furnace. It is a non-metallic product consisting essentially of silicates and aluminates of calcium and other bases. The molten slag is rapidly chilled by quenching in water to form a glassy sand like granulated material. GGBS is recognized as a desirable cementitious ingredient of concrete and as a valuable cement replacement material that imparts some specific qualities to composite cement concrete.

In India, we produce about 7.8 million tonnes of blast furnace slag and it is available separately as GGBS. The disposal of such slag even as a waste fill is a problem and makes serious environmental hazards with the projected economic growth and development in the steel industry, the amount of production is likely to increase many folds and environmental problem will thus pose a larger threat.

It is seen that high volume eco-friendly replacement by such slag leads to the development of concrete, which not only utilizes the industrial wastes but also saves a lot of natural resources of energy. While using the GGBS in concrete, it reduces heat of hydration, refinement of pore structure, permeability and increase the resistance to chemical attack.

Chloride Permeability of concrete is the relative ease with which chloride ion can penetrate into the pores of concrete. The study of chloride permeability in concrete is of importance when concrete is subjected to chlorine atmosphere such as saline nature, chlorine-manufacturing plants etc. The penetration of chlorine ions into concrete may lead to the corrosion of reinforcement and hence weaken the structures and also adversely affect durability of concrete. Therefore a detailed study has been required to find the chloride permeability of concrete.

The factors affecting chloride permeability are as follows

  • Physico-chemical properties of the mass transport system
  • Chloride source concentration
  • Addition of mineral and chemical admixtures
  • Water binder ratio

Materials Used

Cement

Ordinary Portland cement of 53 grade was used, which has the fineness modulus 1.5, Specific gravity 3.08, Consistency 37%, Initial setting time 2hrs 30 min and Final setting time 3hrs 30min.

Coarse aggregate

Angular shape aggregate of size of 20 mm was used and it has the following properties: Specific gravity 2.935, Flakiness index 100%, Abrasion value 20.4%, Crushing value 30.02%, Impact value 23.6%, Bulk density 1.42 x 103 Kg/m3 and Water absorption 1.01%.

Fine aggregate

River sand conforming to zone III of IS: 383 – 1970 was used and its properties are found as follows: Specific gravity 2.68, Moisture content 0.71 and Fineness modulus 2.75.

GGBS

Physical properties of GGBS are: Specific gravity 3.44 and Fineness modulus 3.36, and the chemical composition of GGBS is Carbon (C) 0.23%, Sulphur (S) 0.05%, Phosphorous (P) 0.05%, Manganese (Mn) 0.58%, Free silica 5.27% and Iron (Fe) 93.82%.

Chloride Permeability

For reinforced concrete bridges, one of the major forms of environmental attack is chloride ingress, which leads to corrosion of the reinforcing steel and a subsequent reduction in the strength, serviceability, and aesthetics the structure. This may lead to early repair or premature replacement of the structure. A common method of preventing such deterioration is to prevent chlorides from penetrating the structure to the level of the reinforcing steel bar by using relatively impermeable concrete. The ability of chloride ions to penetrate the concrete must then be known for design as well as quality control purposes. The penetration of the concrete by chloride ions, however, is a slow process. It cannot be determined directly in a time frame that would be useful as a quality control measure. Therefore, in order to assess chloride penetration, a test method that accelerates the process is needed, to allow the determination of diffusion values in a reasonable time.

Principle

This test method consists of measuring the amount of electrical current passed through 50 mm thick slices of 100 mm nominal diameter cores or cylinders during a 6-h period. A potential difference of 60-voltage dc is maintained across the ends of the specimen. One of which is immersed in a sodium chloride solution, the other in a sodium hydroxide solution. The total charge passed, in coulombs, found to be related to the resistance of the specimen to chloride ion penetration.

Significance and use

This test method covers the laboratory evaluation of the electrical conductance of concrete samples to provide a rapid indication of their resistance to chloride ion penetration. The test method is suitable for evaluation of materials and material proportions for design purposes and research development.

Methodology

10%, 20%, 30%, 40%, 50% and 60% of cement was replaced by means of GGBS, which is the by-product of steel. The mix grades used were M20 and M25. For each level of replacement, 3 cylindrical specimens were cast by using thoroughly mixed cement, fine aggregate, coarse aggregate and water in the mixer machine. All the specimens were kept for curing in the water for a period of 28 days and specimens were arranged in RCPT testing machine and test is carried out for 6 hrs. Afterwards, using formulae, total charge passed was found out. The results are tabulated as shown in tables from 1 to 5 and the conclusions are made.

Test specimen

The specimen was cylindrical shape, size of 100mm diameter, 50mm length. Three cylindrical specimens were used for each percentage of replacement of slag for determining chloride ion penetration.

Procedure

The apparatus consists of two cells. The specimen was mounted as shown in Fig 1 and fixed between the cells in such a way that the round edge surface should touch with the solution. After fixing the specimen, the negative side of the cell was filled with 3% NaCl solution. The positive side of the cell was filled with 0.3M NaOH solution till the top surface of the concrete immerses in the solutions. Leakage was checked. Copper rods were used as electrodes. The wires, electrodes, power supply are connected.

AASHTO T277Figure 1: AASHTO T277 (ASTM C1202) test setup


A D.C supplier was used to give electrical potential of 12v. The –ve terminal of D.C.S was connected with electrode of NaCl solution. The +ve terminal of D.C.S was connected with electrode of NaOH solution.

As per electro - chemistry principle, due to the applied voltage, the negative ion i.e. the chloride ion was attracted towards positive terminal i.e. NaOH reservoir. Therefore the chloride ion moves through the concrete specimen. Also the positive ion passes towards the negative terminal i.e. NaCl reservoir through the concrete specimen.

Due to the movement of positive and negative ions current was produced. This current was shown in D.C supplier. Reading was taken immediately after voltage supplied at every 30 minutes. This procedure was done for 6 hours duration. Decrease in charge passed values indicates that the concrete has more resistance to chloride ion penetration

Formulae

The total charge passed is a measure of the electrical conductance of the concrete during the period of the test. If the current is recorded at 30 min interval, the following formula, based on the trapezoidal rule, can be used with an electronic calculator to perform the integration:

Q=900(I0+2I30+2I60+……………. +2I300+2I330+I360)

Where:
Q= charge passed (Coulombs)
I0 = current (Amperes) immediately after voltage is applied, and
It = Current (Amperes) at t min after voltage is applied.

Correction:
If the specimen diameter is other than 3.75 inch (95 mm) the value for total charge passed must be adjusted. The adjustment is made by multiplying the value by the ratio of the cross-sectional areas of the standard and the actual specimens. That is:

Diffusion of Concrete


Qs = Qx x (3.75/X) 2

Qs = charge passed (coulombs) through a 3.75-inch (95-mm) diameter specimen.

Diffusion of Concrete


Qx = charge passed (coulombs) through X in diameter specimen and

X = Diameter (inch) of the nonstandard specimen.

Diffusion of Concrete

 

Mix proportions

Mix proportions are calculated for M20 & M25 grade concrete. The mix ratio for M20 grade concrete is 0.5:1:1.6:3.559 & the mix ratio for M25 grade concrete is 0.44:1:1.326:3.11

Diffusion of Concrete

 

Test results

The experimental procedure is conducted on various types of mix containing partial replacement of cement by GGBS. The values of charge passed are tabulated as shown in Table 1 to 5.

Diffusion of Concrete

 

Graphs

Graphs (Fig 2 to 9) are plotted by taking % of replacement of GGBS in x-axis and charge passed in Y-axis for M20 & M25 grades.

Chloride Permeability of M20 GradeFigure 2: Chloride Permeability of M20 Grade With GGBS Concrete

 

Results & Discussion

Chloride Permeability of M25 GradeFigure 3: Chloride Permeability of M25 Grade With GGBS

The Chloride diffusion tests in M20 & M25 grade concrete were conducted using RCPT testing machine. The results are stated as below:

For conventional concrete, the Charge passed for M20 and M25 grade concrete are 407 Coulombs and 318 Coulombs respectively.

 
Chloride Permeability of M20 GradeFigure 4: Chloride Permeability of M20 Grade Super Plasticiser Added GGBS Concrete

For grade M20 with GGBS the Charge passed values varies from 358 Coulombs to 292 Coulombs and for grade M25 with GGBS the Charge passed values varies from 298 Coulombs to 170 Coulombs.

Chloride Permeability of M25 GradeFigure 5: Chloride Permeability of M25 Grade Super Plasticiser Added GGBS Concrete


For grade M20 Superplasticiser added GGBS concrete, the Charge passed values varies from 553 Coulombs to 345 Coulombs and for grade M25 Superplasticiser added GGBS concrete, the Charge passed values varies from 378 Coulombs to 185 Coulombs.

Comparision of M20 & M25Figure 6: Comparision of M20 & M25 GGBS Concrete

 

Conclusion

For both the grades of GGBS concrete and Superplasticiser added GGBS concrete, as the replacement level increases, the chloride permeability value decreases which improves the chloride penetration resistance of the concrete and durability of concrete.

Comparision of M20 & M25Figure 7: Comparision of M20 & M25 Grade Super Plasticiser Added GGBS Concrete

 

Comparision of ConcreteFigure 8: Comparison of M20 grade GGBS Concrete & Super Plasticiser Added GGBS Concrete

By using GGBS as a replacement material for cement, the cost of construction will be reduced. Use of GGBS in concrete also prevents the environment from degradation.

M25 grade concrete has less chloride permeability than the M20 grade concrete. So, the permeability value also depends upon the mix grade of the concrete.

Comparision of ConcreteFigure 9: Comparision of M25 Grade GGBS Concrete & Super Plasticiser Added Ggbs Concrete

 

Bibliography

  • Adakhar, "Compatibility of super plasticizer slag added concrete in sulphate resistance and chloride penetration," Advances in Civil Engineering Materials and construction technology, vol.33, 2001.
  • Balamurugan, P. and Perumal, P., "Behaviour of High Performance Concrete under elevated temperature and chloride penetration." Proceedings of the National seminar on Futuristic in concrete and construction Engineering, SRM Engineering College, Kattankulathur, pp 8.1-8.11. 2003
  • Chung-Chia Yang, "Relationship between Migration Coefficient of Chloride Ions and Charge Passed in Steady State," ACI Material Journal, pp. 124-129, March – April 2004.
  • IS: 456-2000, Code of practice for Plain and Reinforced Concrete.
  • IS: 10262-2004, Code of Practice for Concrete Mix Design.
  • Rajamane, N.P. and Annie peter, J. et.al, "Improvement in Properties of High Performance Concrete with Partial Replacement of Cement by Ground Granulated Blast Furnace Slag," IE(I) Journal-CV, Vol.84, pp38-41, May 2003.
  • Shetty, M.S. "Concrete Technology." S.Chand & Co, New Delhi 2002.
  • "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration," ASTM, pp. 646-651.
  • Suvimol Sujiavanich et.al., "Chloride Permeability and Corrosion Risk of High-Volume Fly Ash Concrete with Mid-Range Water Reducer," ACI Material Journal, pp. 177-182, May – June 2005.
  • Tiewei Zhang and Odd E.Gjorv., "Effect of Chloride Source Concentration on Chloride Diffusivity in Concrete,' ACI Material Journal, pp. 295-298, Sep – Oct 2005.
NBM&CW November 2010

No comments yet, Be the first one to comment on this.

×

Terms & Condition

By checking this, you agree with the following:
  1. To accept full responsibility for the comment that you submit.
  2. To use this function only for lawful purposes.
  3. Not to post defamatory, abusive, offensive, racist, sexist, threatening, vulgar, obscene, hateful or otherwise inappropriate comments, or to post comments which will constitute a criminal offense or give rise to civil liability.
  4. Not to post or make available any material which is protected by copyright, trade mark or other proprietary right without the express permission of the owner of the copyright, trade mark or any other proprietary right.
  5. To evaluate for yourself the accuracy of any opinion, advice or other content.
Advancing LC3 Cement Technology for Sustainable Construction in India

Advancing LC3 Cement Technology for Sustainable Construction in India

Dr S B Hegde provides a deep, research-driven analysis of LC3 cement, emphasizing its chemistry, process innovations, global applicability, and success stories, and evaluates its technical advantages, performance, cost savings

Read more ...

Supplementary Cementitious Materials Improving Sustainability of Concrete

Supplementary Cementitious Materials Improving Sustainability of Concrete

Concrete is the second most consumed material after water in the world and cement is the key ingredient in making concrete. When a material becomes as integral to the structure as concrete, it is important to analyze its environmental impacts.

Read more ...

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Alite & Belite in Portland Cement: A Key to Sustainability & Strength

Dr. S B Hegde guides construction industry stakeholders on balancing cement’s early strength with long-term durability and sustainability and advocates optimized cement formulations and supplementary materials for more resilient infrastructure

Read more ...

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

Amazecrete: Offering Sustainable Concrete Solutions like ICRETE

V.R. Kowshika, Executive Director, Amazecrete, discusses the economic and environmental benefits of eco-friendly and sustainable products like ICRETE and the positive impact on the construction industry.

Read more ...

Admixture-Cement Compatibility For Self-Compacting Concrete

Admixture-Cement Compatibility For Self-Compacting Concrete

An admixture is now an essential component in any modern concrete formula and plays a significant role in sustainable development of concrete technology. Dr. Supradip Das, Consultant – Admixture, Waterproofing, Repair & Retrofitting

Read more ...

Amazecrete's Icrete: New Age Material for Concrete Construction

Amazecrete's Icrete: New Age Material for Concrete Construction

By maximizing the durability and use of supplementary cementitious materials, Icrete has emerged as a new age material for Concrete Construction V. R. Kowshika Executive Director Amazecrete

Read more ...

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Nanospan’s Spanocrete® Reduces Cement & Curing Time in Fly Ash Bricks

Hyderabad-based Ecotec Industries is a leading manufacturer of fly ash bricks and cement concrete blocks in South India under the trademark NUBRIK. Their products are known for their consistency and quality. Ecotec was earlier owned

Read more ...

Ready-Mix Concrete: Advancing Sustainable Construction

Ready-Mix Concrete: Advancing Sustainable Construction

A coordinated approach by the government, industry stakeholders, and regulatory bodies is needed to overcome challenges, implement necessary changes, and propel the RMC sector towards further growth such that RMC continues to play a vital

Read more ...

Advancements & Opportunities in Photocatalytic Concrete Technology

Advancements & Opportunities in Photocatalytic Concrete Technology

Research on photocatalytic concrete technology has spanned multiple decades and involved contributions from various countries worldwide. This review provides a concise overview of key findings and advancements in this field

Read more ...

Self-Compacting Concrete

Self-Compacting Concrete

Self-compacting concrete (SCC) is a special type of concrete which can be placed and consolidated under its own weight without any vibratory effort due to its excellent deformability, which, at the same time, is cohesive enough to be handled

Read more ...

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete® Additive for Waterproofing & Leak-Free Concrete

Nanospan's Spanocrete Additive for Waterproofing & Leak-Free Concrete has proven its mettle in the first massive Lift Irrigation project taken up by the Government of Telangana to irrigate one million acres in the State.

Read more ...

Accelerated Building & Bridge Construction with UHPC

Accelerated Building & Bridge Construction with UHPC

UHPC, which stands for Ultra High-Performance Concrete, is a testament to the ever-evolving panorama of construction materials, promising unparalleled strength, durability, and versatility; in fact, the word concrete itself is a misnomer

Read more ...

Innovative Approaches Driving Sustainable Concrete Solutions

Innovative Approaches Driving Sustainable Concrete Solutions

This paper explores the evolving landscape of sustainable concrete construction, focusing on emerging trends, innovative technologies, and materials poised to reshape the industry. Highlighted areas include the potential of green concrete

Read more ...

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

GGBS: Partial Replacement Of Cement For Developing Low Carbon Concrete

Dr. L R Manjunatha, Vice President, and Ajay Mandhaniya, Concrete Technologist, JSW Cement Limited, present a Case Study on using GGBS as partial replacements of cement for developing Low Carbon Concretes (LCC) for a new Education University

Read more ...

Behaviour of Ternary Concrete with Flyash & GGBS

Behaviour of Ternary Concrete with Flyash & GGBS

Evaluating the performance of concrete containing Supplementary Cementitious Materials (SCM) like FlyAsh and Ground Granulated Blast Furnace Slag (GGBS) that can be used in the production of long-lasting concrete composites.

Read more ...

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan's Spanocrete®: nano-admixture for concrete

Nanospan’s Spanocrete, a Greenpro-certified, award- winning, groundbreaking nano-admixture for concrete, actualizes the concept of “durability meets sustainability”. This product simplifies the production of durable concrete, making it cost-effective

Read more ...

The Underwater Concrete Market in India

The Underwater Concrete Market in India

India, with its vast coastline and ambitious infrastructural projects, has emerged as a hotspot for the underwater concrete market. This specialized sector plays a crucial role in the construction of marine structures like bridges, ports

Read more ...

The Path to Enhanced Durability & Resilience of Concrete Structures

The Path to Enhanced Durability & Resilience of Concrete Structures

This article highlights a comprehensive exploration of the strategies, innovations, and practices for achieving concrete structures that not only withstand the test of time but also thrive in the face of adversity.

Read more ...

Self-Curing Concrete for the Indian Construction Industry

Self-Curing Concrete for the Indian Construction Industry

The desired performance of concrete in the long run depends on the extent and effectiveness of curing [1 & 2]. In the Indian construction sector, curing concrete at an early age is a problematic issue because of lack of awareness or other

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.