Increasing energy costs, overcapacity, and environmental pollution are the top concerns of the cement industry, which is one of the major contributors to CO2 emissions.

Dr S B Hegde, Professor, Department of Civil Engineering, Jain College of Engineering & Technology & Visiting Professor, Pennsylvania State University, United States of America, and Dr. Prashanth Banakar, Principal, Jain College of Engineering & Technology, Hubballi, Karnataka

Dr S B Hegde

As per the first report from WEF’s Net-Zero Industry Tracker 2022, to enable low-emission cement plants, it is predicted that cement consumption will increase by 46% by the year 2050, necessitating an investment of US$185 billion in clean hydrogen production and infrastructure for CO2 handling.

With 6 to 9% of the world’s CO2 emissions coming from cement, it is one of the major contributors to climate change. In order to significantly minimise this, the cement industry will eventually see a decrease in cement volumes as well as a shift towards pre-fabrication and developing new manufacturing methods.

Three key strategies - optimize, electrify, and decarbonize - can enable nations to satisfy their energy needs while emitting zero carbon dioxide. Basically, all nations must reduce energy usage through increased efficiency (optimise); and shift energy demand to electricity and away from fossil fuel burning (electrify).

It is expected that globally, the middle-class will have a 100% more purchasing power by 2050. There would be tremendous repercussions for global industries that produce basic materials and energy to sustain modern society from housing to consumer goods. The most significant contributor’s anthropogenic CO2 emissions today are from these industries. Demand for energy and industrial products is projected to grow by 30-80% by 2050. In order to achieve climate goals, we need to decarbonize the processes and value chain of industries.

The actuality of net-zero for these businesses is trailing, despite ongoing efforts and commitments, and extrapolating from the current rate of advancement, will fall well short. To address an underserved area of the transition, it is essential to bring increased transparency into the reality of the current gap and raise discussions on how to structurally solve the problem. While it is heartening to see sustainability indicators being adopted and monitored at the national level in carbon-intensive industries like building construction, transportation, and power production, heavy industries still have a long way to go.

In carbon-intensive sectors such as power generation, construction, and transportation, standardization and monitoring of sustainability metrics are encouraging, but there are significant gaps in heavy industries.

The World Economic Forum has benchmarked countries’ energy transition through the Energy Transition Index for ten years. Now is the time for industries and governments to increase their efforts to decarbonize industrial processes, improve energy efficiency, and reduce their dependence on fossil fuels. Governments and industries should double down on efforts to accelerate decarbonization, improve energy efficiency, and reduce fossil fuel dependence.

Carbon neutrality in global cement industries
The manufacturing process of cement generates two sources of greenhouse gases: 40% of them come from burning fossil fuels to heat kilns at 1300-1450°C; while 60% come from the thermal decomposition of limestone into carbon dioxide and lime, both of which are essential components of cement (about 70%).

Cement industry, with 6% of all man-made emissions, is the second largest emitter, after steel. Societal needs and urbanization are expected to increase cement demand by 45% by 2050. As part of the Net-Zero 2050 pathway proposed by the IEA, the increase should be limited to current levels.

The cement industry can already reduce emissions without introducing disruptive technologies by leveraging efficiency and circularity levers like lowering the clinker-to-cement ratio and utilising waste from other industries as alternative fuels. The only known method for bringing sectoral emissions close to zero is by using CCUS technology; whose use could result in a 50–85% rise in production costs. By 2030, the technology is anticipated to be at the commercial level.

In addition to investments in carbon capture on industrial assets, at least $185 billion is required to create the infrastructure for low-emission power and hydrogen production, as well as the transport and storage of 1,370 MTPA of CO2 (the second-largest need in the IEA Net Zero scenario by 2050).

Low-carbon cement is anticipated to enter the market with a green premium above 50% due to the high cost of carbon capture, which would result in 1-3% rise in housing costs. The cement consumers’ demand signals for low-emission cement are essential for motivating investments. To do this, cement buyers’ confidence in their capacity to transfer the premium onto the final consumers must be strengthened.

For first movers in the low-emission cement sector, greater international collaborations and stronger regulatory measures, such as carbon pricing, carbon border adjustment mechanisms, circularity, or product specification standards, can help develop a competitive and financially sustainable market. By 2050, the sector will need to invest $500 billion in carbon capture technologies, or $16 billion annually, on top of current investments. A sufficient taxonomy and substantial governmental finance assistance will make it easier to get green bonds, which will help businesses.

Measures for achieving net zero emission
We reiterate the following actions on an immediate basis:
  • Introduce efficiency measures to promote recycling of concrete and maximise emission reduction in current operations.
  • Increase the number of carbon capture initiatives to quicken the technology’s learning curve, lower costs, and advance commercial readiness.
  • Create the infrastructure needed for CO2 transit and storage to enable the production of low-emission cement.
  • Increase the number of low-emission cement demand signals to encourage investors and manufacturers to invest money in low-emission assets.
  • Create policies to support the afore-mentioned four targets and bolster the commercial viability of producing low-carbon cement.
  • Electrification with storage. Renewable energy has helped dramatically reduce the carbon intensity of electricity across the globe.
  • Waste heat recovery.
  • Greengas and biomass.
  • Hybrid heating.
  • Hydrogen.
  • CCUS.
Conclusions
There is a lot of work to accomplish. “Low-emission” industries need to be defined by international standards.

Technologies for low-carbon production must prove their worth on a large scale. In order to create demand for low emission products, consumer acceptability and awareness must advance. Infrastructures must be built in order to create and integrate low-carbon processes.

Markets with minimal carbon emissions must become economically viable. To hasten capital inflows, investments must be “de-risked.” A strong policy foundation can encourage and facilitate change.

Governments and industries should double down on efforts to accelerate decarbonization, improve energy efficiency, and reduce fossil fuel dependence.

Without a paradigm shift in multistakeholder collaboration across vast industrial ecosystems, these and other goals cannot be accomplished. They cannot both be attained if equity and justice are not prioritised during industry transitions. It is essential to people’s livelihoods and possibilities.

One of the most difficult obstacles to overcome in the energy transition may be industrial decarbonization. But we want to be upbeat. There are established industry routes to net-zero, and transparency is growing. If the global aspiration and spirit of cooperation displayed at COP26 and the World Economic Forum Annual Meeting in 2022 in Davos spur effective action, we might observe this decade as one of the key turning points for net-zero sectors.

About the Authors
Dr S B Hegde
Dr S B Hegde is currently a ‘Professor’ at the Department of Civil Engineering, Jain College of Engineering and Technology, Hubli, Karnataka and also a ‘Visiting Professor’ of Pennsylvania State University, United States of America. He has more than 30 years of experience in Cement Manufacturing and has held leadership positions in reputed cement companies in India and overseas. He is also a recipient of the ‘Global Visionary Award’ in 2020.
 
Dr S B Hegde
Dr. Prashanth Banakar is presently serving as an Academic Council member, Davangere University, and Principal at Jain College of Engineering & Technology Hubballi. He has more than 17 years of academic experience and is presently guiding many Ph.D. scholars, and is doing research on Materials, Polymer Composites, Finite Element Methods, and Rapid Prototyping. Under his leadership, Jain College has been enlisted by the Government of Karnataka in the Super 30 program for the RETE to build model engineering colleges in the state.
Concrete Rheology - Unveiling the Secrets of Concrete
Concrete is a heterogeneous composite complex material, and its hardened property is influenced by its fresh property. Concrete today has transformed into an advanced type with new and innovative ingredients added - either singly or in

Read more ...

ICRETE: Making Concrete Economical
ICRETE offers many benefits apart from reducing cement content and giving high grades saving to ready-mix concrete companies; it helps reduce shrinkage and permeability in concrete slabs, increases the durability of concrete, and also works

Read more ...

UltraTech Cement to implement Coolbrook’s RotoDynamic HeaterTM revolutionary technology for industrial electrification
UltraTech Cement Limited, India’s largest cement and ready-mix concrete (RMC) company, and Coolbrook, a transformational technology and engineering company, will jointly develop a project to implement Coolbrook’s RotoDynamic HeaterTM (RDH)

Read more ...

Plastic Shrinkage and Cracks in Concrete
Plastic shrinkage cracking occurs when fresh concrete is subjected to a very rapid loss of moisture. It is caused by a combination of factors such as air and concrete temperature, relative humidity, and wind velocity at the surface of concrete. These can cause

Read more ...

Mechanised way of plastering with spray Plaster Machine
This paper covers the research work carried out on cement plastering process for internal and external building wall by using spray plastering machine. Objective of study is to experiment and compare the plastering activity by conventional way and

Read more ...

Construction Defects Investigation & Remedies
In recent years, the speed of construction has increased very fast; buildings which used to take 3-5 years are now getting completed in 1-2 years. There is a race to complete projects faster, but due to this speedy construction, the quality of construction is often

Read more ...

Challenges in usage of Hydrogen in Cement Industry
With its zero-emission characteristics, hydrogen has become a promising decarbonization path for the cement industry. While there are several issues that need to be resolved in the use of hydrogen, there are also many advantages, so much so that the growth

Read more ...

Enhancing Corrosion Resistance of Steel Bars in Reinforced Concrete Structures
Reinforced concrete is a composite material which is made using concrete and steel bars. Concrete takes the compressive forces and steel bar takes tensile forces. Concrete around the steel bar protects it from corrosion by providing an alkaline environment

Read more ...

Moving toward workability retention to rheology retention with low viscosity concrete technology
Amol Patil, Sr. Specialist - General Manager (Admixture and Specialty Products), Master Builders Solutions (India), and Nilotpol KAR, Managing Director, Master Builders Solutions (South Asia), present a paper on the concept of low viscosity concrete in

Read more ...

Cement industry innovating eco-friendly packaging
Cement companies are constantly innovating to meet global sustainability standards and improve logistics, shelf life, and utility of cement, while reducing wastage. Thei aim is to reduce their environmental impact without compromising their product

Read more ...

IIT Madras uses Solar Thermal Energy to Recycle Waste concrete
Researchers at the Indian Institute of Technology Madras have developed a treatment process using solar thermal energy to recycle construction and demolition debris. Waste concrete from demolition was heated using solar radiation to produce recycled concrete

Read more ...

Textile Reinforced Concrete - A Novel Construction Material of the Future
As a new-age innovative building material, TRC is especially suited for maintenance of existing structures, for manufacturing new lightweight precast members, or as a secondary building material to aid the main building material. Textile Reinforced Concrete

Read more ...

Technological Innovation for Use of Bottom Ash by-product of Thermal Power Plants in the Production of Concrete
The day is not far for the adoption of this innovative, eco-friendly, and cost-effective bottom ash – concrete process technology by construction agencies undertaking road/infrastructure project works, real estate developers, ready mix concrete (RMC) operators

Read more ...

Headed Bars in Concrete Construction
Using headed bars instead of hooked bars offer several advantages like requirement of reduced development length, less congestion, ease of transport and fixing at site, better concrete consolidation, and better performance under seismic loads.

Read more ...

Sustainability of Cement Concrete - Research Experience at CRRI on Sustainability of Concrete from Materials Perspective
It can be said that ever since the publication of the document of World Commission on Environment and Development [1], the focus of the world has diverted towards sustainability. Gro Harlem Bruntland [1] defined sustainable development as “development

Read more ...

Shrinkage, Creep, Crack-Width, Deflection in Concrete
The effects of shrinkage, creep, crack-width, and deflection in concrete are often ignored by designers while designing structural members. These effects, if not considered in some special cases such as long span slabs or long cantilevers, may become very

Read more ...

Concrete Relief Shelve Walls - An Innovative Method of Earth Retention
Relief shelve walls are a unique concept that use only conventional construction materials like PCC / RCC / steel reinforcements, and work on a completely different fundamental to resist the lateral load caused due to soil. Information on the various dimensions

Read more ...

Finnish company Betolar expands to Indian concrete markets with a cement-free concrete solution
Betolar, a Finnish start-up, and innovator of geopolymer concrete solution Geoprime®, has expanded its operations to Europe and Asian markets including India, Vietnam and Indonesia. Betolar’s innovation Geoprime® is the next-generation, low carbon

Read more ...

Why Fly Ash Bricks Are Better Than Clay/Red Bricks
It is estimated that in India each million clay bricks consume about 200 tons of coal and emit around 270 tons of CO2; on the other hand, with fly ash bricks production in an energy-free route, there are no emissions. Dr. N. Subramanian, Consulting

Read more ...