Rajesh Bhargava, Department of Civil Engineering, S. V. Polytechnic College, Bhopal
K.K.Pathak, Department of Civil and Environmental Engineering, NITTTR, Bhopal
Saleem Akhtar, Department of Civil Engineering UIT (RGPV), Bhopal

Introduction

Applications of prestressed concrete are many, especially in recent times, it has been widely used in bridges, buildings, rail sleepers, nuclear vessels, water and other liquid retaining structures etc. Prestressed concrete is a particular form of reinforced concrete in which external prestressing force is applied on the concrete to reduce or eliminate the tensile stresses and thereby control or eliminate cracking. Prestressed concrete is a typical set up of cable and concrete which makes a prestressed concrete section considerably stiffer than reinforced concrete section. In prestressed concrete, cable layout plays an important role in reducing tension from the concrete. Due to curvature, cable exerts forces on the concrete to counterbalance the forces causing tension. In curved tendons, upward force is imposed on the concrete which may reduce or eliminate the downward deflection as well; which is almost always the governing factor in structural design.

Akhtar et.al (2008) carried FEA analysis of prestressed concrete beams using B-spine cable profile for non friction conditions. Pathak et.al (2004) presented analysis of prestress concrete beam considering different cable models. Bapat et.al (2010 found cost effe ctiveness of HDPE sheathing for post tensioned prestressed concrete structures over galvanized metallic ducts. Lorenc et al.(2006) experimented the failure mechanisms and behavior of composite steel–concrete beams prestressed with external tendons subjected to positive bending. Özcan et al.(2009) carried out experimental and finite element analyses of the steel fiber-reinforced concrete (SFRC) beams. The results obtained from the finite element and experimental analyses were compared and found in good match. Chung et al.(2006) worked on the deflection estimation of a full scale prestressed concrete girder using long-gauge fiber optic sensors. It was demonstrated that long-gauge fiber optic sensors could provide the same accuracy with conventional sensors. Frederick et al.(2000) carried out experimental study on CFRP-prestressed high-strength concrete bridge beams. Fiber-reinforced polymer (FRP) tendons and reinforcing bars (rebar) were developed for use with concrete. FRP products are non-corrosive and lightweight when compared to traditional steel members. Zhanga et al (2009) attempted experimental and theoretical studies on composite steel concrete box beams with external tendons. Sung et al.(2009) established stress–strain and deflection relationships of RC beam bonded with FRPs under sustained load Fiber-reinforced polymer (FRP) systems that had a strong resistance against long-term deformation. Padmarajaiah et al. (2002) attempted finite element assessment of flexural strength of prestressed concrete beams with fiber reinforcement. Influence of fibers on the concrete failure surface and stress–strain response of high strength concrete and the nonlinear stress–strain curves of prestressing wire and deformed bar were considered. Padmarajaiah et al.(2004) carried out flexural strength predictions of steel fiber reinforced high-strength concrete in fully and partially prestressed beam specimens. These studies mainly attempted to determine the influence of trough-shaped steel fibers in altering the flexural strength at first crack and check the load–deflection and moment–curvature characteristics, ductility and energy absorption capacity of the beams. Cattaneo et al.(2012) investigated the flexural behavior of reinforced, prestressed and composite self-consolidating concrete beams. The flexural behavior at service stage and at ultimate limit state was experimentally studied by means of four-point bending tests on six beams. Eythor et al.(2011) tested prestressed concrete beams with BFRP (basalt fibred reinforced polymer) tendons. The main findings were that the stiffness and bearing capacity of the beam increased relative to un-prestressed beams.

In this paper the displacement behaviors of a double span indeterminate prestressed concrete beam have been studied numerically with analytical and numerical methods. A prestress concrete beam with parabolic cable profile for constant amount of prestressing force was analyzed by Macaulay's method, matrix method (STAAD.Pro) and finite element method (FEM) for constant amount of prestressing forces. For finite element method (FEM), cable is modeled as B-spline. The B-spline model represents the realistic cable profile. The results of these three methods were computed and results are critically analyzed and compared.

Prestressed Concrete Beam
Figure 1: Parabolic profile and Actual profile at juncture Figure 2: B - spline Cable profile

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Click Here
To Know More or to Contact the Manufacturer
Please let us know your name.
Invalid Input
Please let us know your Designation.
Please let us know your Contact Number.
Please let us know your email address.
Please brief your query.
Our other Value-Added Services:

To receive updates through e-mail on Products, New Technologies & Equipment, please select the Product Category(s) you are interested in and click 'Submit'. This will help you save time plus you will get the best price quotations from many manufacturers, which you can then evaluate and negotiate.

Invalid Input
Invalid Input
Invalid Input
Samir Surlaker, Director, Assess Build Chem Private Limited, emphasizes the importance of a clear cover for a concrete structure since concrete as a porous material needs protection of its reinforcement. Along with the thickness (quantity) of cover, the porosity of

Read more ...

Concrete technology has come a long way since the Romans discovered the material, with a number of ingredients, which include a host of mineral and chemical admixtures, besides of course, the Portland cement, aggregates (coarse and fine), and water. These ingredients

Read more ...

Anil Kumar Pillai, GM, Ramco Cements, discusses two major softwares (Life 365 and DuraCrete), used in the industry for protection of RCC structures. The common design approach is faulty because we consider only the loading aspect, whereas the environmental aspect is equally

Read more ...

Fibre Tuff, macro synthetic polypropylene fibres, are heavy-duty synthetic fibres that are specially engineered for use as secondary reinforcements, providing excellent resistance to the post cracking capacity of concrete. They are replacing steel fibres in a range

Read more ...

Reinforced concrete design and construction practice has historically focused on the use of bonded straight or bend rebar as a method for rebar anchorage. This relies on bond integrity between the rebar and the concrete so that sufficient anchorage

Read more ...

Innovation and entrepreneurship are essential ingredients in building a successful commercial venture. The ways in which these two concepts fuel enterprise are something entrepreneur's never stop exploring. There is no doubt that innovation were

Read more ...

Alite and belite are the predominant phases of Portland cement formulation. Alite is impure tricalcium silicate (C3S) and belite is impure dicalcium silicate (C2S). The impurities are an integral part as cement is manufactured

Read more ...

Concrete is a versatile construction material and day by day its consumption is increasing globally. It is second only to water in the global consumption. No civil engineering structure is feasible without using concrete

Read more ...

The use of Graphene with concrete has been talked about and researched ever since Graphene was invented in 2010 which grabbed its inventors a Nobel prize. Nanospan is the first company in the world to break technological and commercial

Read more ...

Fosroc is the foundation of the JMH Group. It employs over 1700 employees in 17 operating companies based in Europe, the Gulf & Middle East, India, South Asia, and China. Through FGT, its trading company, it services another 50 countries

Read more ...

Established in 1983 by French expatriate entrepreneurs, the Dextra Group has a long history of growth and development, driven by strong entrepreneurship and innovation. It has diversified into three main activities: manufacturing, trading and freight forwarding

Read more ...

Jyotirmoy Mishra, Ph.D. Scholar, Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, presents his research on the feasibility and compressive strength performance of geopolymer concrete

Read more ...

As every one ton of Cement (OPC) produced, emits 0.96 tons of CO2, there is an urgent need to promote blending materials (ex. GGBS &PSC) and screened slag, to achieve lower CO2 emissions, reduce greenhouse gas effect, reduce exploitation

Read more ...

In most of the developing countries, demand for steel for use as a reinforcing material is increasing day by day. However, when steel is in short supply, one can consider bamboo as an alternative material for reinforcement

Read more ...

There is high demand for white cement in countries with hot climates, as more heat is reflected from white concrete surfaces as compared to standard grey concrete. As a value-added product, white cement is becoming

Read more ...

Garry Martin, Director - Major Projects, Low & Bonar Construction Fibres, presents a new examination of the benefits of micro fibres in both the plastic and hardened state of concrete and their contribution to increased sustainability.

Read more ...

An integrated material and structural design strategy of strength through durability is the need of the hour since structures are designed for ductility and structural integrity. Dr. S. B. Hegde, President – Manufacturing

Read more ...

The demand for structural strengthening of ageing structures is growing rapidly in buildings, industrial structures, infrastructure projects like bridges, dams, etc. Structural Strengthening also

Read more ...

Durability and strength are two most important criteria and requirements for the long-term performance of concrete structures against weathering action, chemical attack and abrasion. Any deficiency

Read more ...

Cement is a key binder component of concrete production in the building industry. It is a complex hydraulic binder, made up of four main clinker components; alite (Ca3SiO5), belite (Ca2SiO4)

Read more ...

×
Sign-up for Free Subscription
'India Construction Week'
Weekly e-Newsletter on Construction Industry
Get the latest news, product launches, projects announced / awarded, government policies, investments, and expert views.
Click here to subscribe.