Tunnelling in Himalayas Where Uncertainty is Highly Certain

Brijesh Ashokbhai Wala, Engineer, National Highways and Infrastructure Development Corporation Limited (NHIDCL)
Brijesh Ashokbhai Wala, Engineer, National Highways and Infrastructure Development Corporation Limited (NHIDCL), presents the vagaries and challenges in underground construction, with case studies of projects constructed or planned in the complex geological terrains of the Himalayas, along with some mitigation measures and precautions to prevent accidents.

Mountain belts which are created by continent-continent collision represent the most dominant and unique geologic features on the surface of the Earth. Some of the best examples of such continent-continent collision which lead to orogenesis are the Rockies and the Appalachian belt in North America, the Andes in the South America, the Ural Mountains in Central Eurasia, the Alps of Europe, and the Himalayas in Asia. The youngest and the most impressing of all such collisional belts is the Himalayan orogeny. The Himalayan mountain ranges are the product of collision between the India and Eurasian plate and a live example of collision mountain belt as the process of mountain building is still active, forming the highest range and plateau in the world.

Collision of Indian and Eurasian plate leading to formation of Himalayas
Tectonostratigraphic Subdivision of the Himalayas
The Himalayan mountain belt extends over 2500 km from northwest to northeast with a variable width of 230 to 330 km. The Himalayan terrain from South to North has been divided into sub-parallel tectonostratigraphic sub-divisions as under:
  • Sub-Himalaya or Outer Himalaya
  • Lower Himalaya or Lesser Himalaya
  • Higher Himalaya or Greater Himalaya
  • Trans Himalaya or Tibetan Himalaya
The dividing planes between these sub-divisions are the thrusts of regional dimension and varying tectonic activities and each subdivision has a characteristic stratigraphy which is not easily correctable with adjacent zones. From south to north, bounding faults are as follows:
  • Main Frontal thrust (MFT): Between Indo-Gangetic alluvial planes and Outer Himalayas.
  • Main Boundary Thrust (MBT): Between Outer Himalayas and Lesser Himalayas.
  • Main Central Thrust (MCT): Between Lesser Himalayas and Greater Himalayas.
  • Southern Tibetan Detachment system (STD): Between Greater Himalayas and Trans Himalayas.
Along each of these thrusts, tens to hundreds of kilometres of displacement between India and Asia have been accommodated, which in turn exert a major influence on landsliding and many devastating landslides are associated with movements along these thrusts.

Tunnelling in Himalayas
The government plans to build massive hydroelectric projects in the mountainous ranges to tap the renewable energy from gushing rivers; build road tunnels to connect the remote locations so that all-weather connectivity can be provided to the locals and the Armed Forces; and rail tunnels to connect the remotest location with the rail lines so that transportation, which once was a daunting task, will become smoother. All these underground structures have been planned in the complex geology of the Himalayas in the extreme vicinity of the tectonostratigraphic divisions mentioned above.

Tectonostratigraphic subdivisions of the Himalayas

Challenges encountered in various tunnelling projects
Tunnelling through the weak, fragile, and jointed rock masses of Himalayas is a challenging task. Tunnelling problems could be fault/thrust/shear zones, running ground conditions, heaving, squeezing and swelling, rock bursting, ground water inflow, hot temperature conditions and gases in rock, wedge/block failures, etc.

Due to an active tectonic zone, encountering fault/thrust/shear zones while tunnelling in the Himalayas is inevitable. A shear zone has sub-parallel walls in which deformations are localized as a result of folding, faulting, and thrusting. The shear zones, if combined with water ingress, (which occurs usually), hampers the progress of tunnelling considerably and, in some cases, there can be a complete break.

Dul-Hasti Hydroelectric project: The 390 MW Dul-Hasti hydropower project is a run-of-the-river scheme, constructed on river Chandra, a tributary of river Chenab that lies within the Lesser Himalayan Zone and is characterized by a unique plateau like feature with schists and gniesses on the western side and quartzites on the eastern side. The tunnel encountered a number of small and major faults and shear zones with crushed gouge material.

Figure 3 shows the muck flow when a shear zone was encountered during tunnelling. The incident happened after a shear zone was punctured, rendering the tunnelling extremely difficult. The shear zones were dipped steeply, striking oblique to the tunnel axis, and covering a length of 15 to 20 m along the tunnel alignment.

Muck flow from shear zones during tunnelling in Dul-Hasti hydroelectric project

Mostly, shear zones are associated with confined aquifers with high aquifer head. The shear zones along tunnel axis are usually projected from the geological mapping. However, in metamorphic terrain, due to being severely folded and faulted by tectonic events, the geology may significantly differ from surface geological mapping and hence, in such a terrain, advance probe hole technique during tunnelling has proved to be effective to ascertain the nature of the geological condition.

At Dul-Hasti, advance probe holes of 45 m length were found to be very effective during tunnelling in a shear zone closely associated with confined aquifers.

Installation of Umbrella Pipe roofing (b) Excavation by Multi Drift Technique

Tapovan - Vishnugad Hydropower project: The 520 MW Tapovan-Vishnugad hydropower project is a run-of-the-river scheme. It lies within Dhauliganga and Alaknanda valleys in Uttrakhand with high-grade metamorphic rocks of Central Himalayan crystalline series. Since the tunnel site has the main central thrust (MCT) in the vicinity, a number of small and big shear zones and faults were encountered while tunnelling, which resulted in a delay of 17 months. The situation was tackled by the following measures:
  • Advance cement grouting for face and crown stabilization.
  • Umbrella pipe roofs of 114 mm diameter, 15 m long @ 0.3 m spacing from SPL to SPL to ensure crown stability.
  • For seepage control, drainage pipes of 76 mm diameter were installed.
  • Excavation was done by breaking using Multi Drift Method.
  • Pull length restricted to 1 m.
  • Steel ribs (ISMB 250) at 0.6 m spacing were provided.
Atal Tunnel: The Rohtang Tunnel (commonly known as Atal Tunnel) is 8.8 km in length, extending from Dhundi to Teling in Himachal Pradesh and is situated in Higher Himalaya across Pir Panjal Range and Rohtang Ridge. The Seri-Nallah Fault Zone above tunnel alignment (shown in Figure 5) crosses the tunnel from the South Portal side and forms a contact between Phyllitic Schist and Migmatite. The 587 m long fault zone is heavily charged with water.

Google image of Ser-Nallah Fault zone (b) Actual photo of Seri Nallah Fault Zone showing alignment of tunnel

The tunnelling work started in August 2010 and progressed well upto 1902 m, but in December 2011, the quality of rock encountered started deteriorating, resulting in long delays and slow advancements. Excessive deformation due to squeezing ground condition occurred subsequently. The project was delayed by approximately 5 years due to the geological surprise encountered in the form of the Seri Nallah fault zone (Figure 6).

Muck flow, and (b) Excessive deformation were the actual problems faced while tunnelling in Seri-Nallah zone

The mitigating measures included:
  • Excavation in segmental phases
  • Installation of double rows of 89 mm diameter pipe roofing umbrella
  • Probe hole drilling for assessment of advance geology
  • Tunnel Seismic Prediction (TSP) tests conducted on the face to get a better understanding of muck flow condition and the rock strata.
To overcome the flowing condition and extremely poor geological conditions, P-5 system has been followed to tackle such adverse conditions. P-5 system consists of the following operations for the purpose of excavation:
  • Plug
  • Probe
  • Pressure Relief
  • Protection of roof
  • Pre-Grout and Support
Double row pipe roofing (b) Tunnel seismic prediction

Squeezing, heaving, and swelling
At depth, the state of stress within the rock mass is disturbed due to tunnel excavation. The stresses are redistributed with time to achieve a new state of equilibrium - commonly known as the “natural healing process” of rock mass. When the stresses are low and less than in-situ rock strength, there are no tunnel stability problems, however, when the stresses exceed the in-situ strength, it initiates the process of progressive failure around the periphery of the tunnel opening. The failure of rock mass due to overstressing and movement of the failed rock mass into the tunnel opening is called squeezing.

Maneri Bhali project: The Maneri Bhali project experienced severe squeezing within a 40 m length of 6 m diameter tunnel. The highly crushed, pulverised and thick contact of metabasics and the qaurtzites were highly strained due to active tectonic folding. To overcome the problem, the horse-shoe section was changed to circular section and instruments installed to monitor the troubled zone.

Nathpa-Jhakri project: In the HRT of Nathpa-Jhakri, highly converging strata has been encountered due to high ground stresses where quartz mica schist striking sub-parallel to tunnel were encountered. They were reflected in the form of cracks in the shotcrete, bending and buckling of steel ribs and reduction of tunnel section. To mitigate the risky situation, the problem was tackled by over-excavation and supporting it with steel ribs.

To overcome the effect of excessive deformation and squeezing rock mass, the rate of deformation must first be analysed by continuous monitoring in the particular region. In addition to that, yielding supports and pressure relief holes (as shown in Figure 9) should be applied with remedial measures during excavation to control the deformation.

Severe squeezing of tunnel

Rock bursting, spalling, and slabbing
Rock bursts or spalling are caused by overstressing of brittle, massive rocks often at a depth more than 1000 m below surface. At shallower depths, these failures can be induced where high horizontal stresses or strongly anisotropic stresses are acting.

Parbati Hydroelectric Stage II: This project lies in the Lesser Himalayan region. Being very close to the main central thrust (MCT), the rocks along HRT have undergone intense compression and are therefore folded, faulted, foliated and jointed - typical characteristics of Himalayan rocks. The excavation was done by open-face hard rock TBM of 6.8 m diameter for a particular section comprising of granites/gneissose granites followed by quartzites.

Due to the presence of four primary joint sets and random joints, a large block of 6 m * 2.5 m separated from the crown, forming a cavity. As the area was inaccessible, the rock bolter could not reach the height of cavity and pre-grouting was not possible because of tight joints. To tackle this, ring beams were installed, the rock was supported with channels and girders, and the cavity was backfilled with concrete. The whole process delayed the project by more than three weeks. With this experience, modifications were made in the TBM by mounting an extension drilling system. The next 250 m created similar problems of wedge/block failure resulting in overbreaks of more than 5m which were backfilled with concrete.

Linear stress controllers (Yielding supports) applied to control the deformation

The case studies indicate that tunnelling in the tectonically active Himalayan terrain (which is characterized by widely varying geology with folds, faults, thrusts and shear zones along its entire belt), geological uncertainties cannot be ruled out. The problems occurring due to geological surprises can be minimised and mitigated by geological investigations and adopting advanced measures.

Before the tendering process of any tunnel project, a detailed project report (DPR) should be prepared by performing geotechnical investigations like bore logging along the alignment proposed to understand the in-situ stress conditions in the rockmass and pre-construction surveys like Airborne Electro-Magnetic survey (AEM), Seismic Refraction tests and Electrical Resistivity tests to understand the groundwater conditions and rock mass properties be carried out adhering to standard technical specifications. The report should comprise of detailed test results of all the investigation methods mentioned above. This will facilitate easier recognition of the ground conditions and prepare the stakeholders of any uncertainty that can be encountered during the execution of the project, which will help save resources.

  • Carter, T. G. (n.d.). Himalayan Ground Conditions challenge innovation for successful TBM Tunnelling.
  • Kumar Yadav, V., Kumar Angra, P., & Kumar, V. (n.d.). Indian Geotechnical Conference-2010.
  • Rao, S. K. (2017). Necessity of NATM tunnel in Himalayas - A Case Study of Rohtang Tunnel. https://www.researchgate.net/publication/320729563
  • Karki, S., Chhushyabaga, B., & Khadka, S. S. (2020). An Overview of Design and Construction practices of Himalayan Hydropower tunnels. Journal of Physics: Conference Series, 1608(1). https://doi.org/10.1088/1742-6596/1608/1/012008
  • Tunnelling in the Himalayan Region: geological problems and solutions. (n.d.). https://www.researchgate.net/publication/269407897
CRCHI Slurry TBM ‘Avni’ Helps Make a Breakthrough in Bangalore Metro Project
The 6.6m Slurry TBM developed by CRCHI exited the tunnel at Vellara Station, Phase II of Bangalore Metro in India, becoming the first TBM to complete the breakthrough for the whole line of the project. Avni is one of the four slurry TBMs provided by CRCHI

Read more ...

The Bolter Miner - A Technology Revolution for Roadway Development in Underground Coal Mining
In India, coal is still the primary source of energy; over the past few years, there has been quantum jump in coal production level, but it was mostly due to the high percentage share from the opencast sector. The country is witnessing a fast

Read more ...

CRCHI emerges as provider of total underground engineering equipment and solutions
China Railway Construction Heavy Industry Corporation Limited (CRCHI) showcased its comprehensive range of equipment and products at bauma that included solutions for the whole industry chain in the field of

Read more ...

Herrenknecht AG wins bauma Innovation Award 2022 for development of continuous tunnelling
Herrenknecht AG won the highly coveted award bauma Innovation Award 2022 in the category “Machine Technology” for the new development of continuous tunnelling. The award was given for the next innovation boost in the mechanized

Read more ...

The Genesis of Underground Engineering
Regardless of the tunnelling technology used, tunnel designers decide the future success or failure at an early project stage. In fact, designers are the real managers of tunnel construction. The choice of design together with selected contract model is

Read more ...

Managing Geological Complexity in BVC and PAC of Tehri PSP, India - A case study
Tehri hydroelectric project is located on the left bank of River Bhagirathi in the state of Uttarakhand. Tehri Pumped Storage Project (PSP) comprising 4 Nos of reversible pump-turbine units of 250 MW each, involves construction of an underground Machine Hall

Read more ...

TBM driving under low overburden by adopting innovative methodology
TBM mining in urban areas particularly under low overburden (less than 0.5D, D = tunnel Dia) is a big challenge to design team as well as execution team. While working in a Lucknow metro project, the metro authorities encountered a stretch where TBM had to cross

Read more ...

Tunnel Ventilation System Basic Concepts and Designing Principles
The term ventilation combines several functions such as smoke extraction, pollution ventilation, and ventilation for environmental purpose. The design of a ventilation system is usually based on three scenarios: During construction: to provide external

Read more ...

CRCHI Mega Slurry TBM ‘Jinghua’ Assists the First Tunnel Section Breakthrough of Beijing East Sixth Ring Road Reconstruction Project
In September 2022, the Beijing East Sixth Ring Road Reconstruction Project reported another good news: the CRCHI mega slurry TBM ‘Jinghua’ smoothly reached the intermediate air shaft, marking the project’s achievement. The maximum excavation diameter

Read more ...

TERRATEC EPBMs ready to tackle Kanpur Metro’s 1st Underground Section in India
TERRATEC celebrated the successful site acceptance testing of two 6.52m diameter Earth Pressure Balance Tunnel Boring Machines (EPBMs) for Uttar Pradesh Metro Rail Corporation (UPMRC) for Corridor-1 of Kanpur MRTS Project (KNPCC-05) in India. The two 6.52m

Read more ...

Tunnelling Asia 2022 - International Conference on Underground Space
Tunnelling Asia 2022, organized by TAI, which took place in Mumbai during 27th and 28th June, saw a huge gathering of delegates/engineers from all around the world. The theme of the conference: ‘Underground Space: Need of the Day’ focused on

Read more ...

Hydraulic Heave Failure Mitigation Approach for the construction of the Deepest Metro Ventilation and Egress Shaft in India
Dr. Lakshmana Rao Mantri, Assistant General Manager (Designs), and Satya Narayan Kunwar, Project Manager, AFCONS Infrastructure Ltd. , discuss the design and construction challenges of constructing India’s deepest underground metro ventilation

Read more ...

Creating Zero-Carbon Tunnels
Despite a daunting timeline set by the Paris Accord, zero-carbon tunnels are within reach, provided the right solutions are implemented. Er. Vasileios (Bill) Paoulos, CMT, CMRL, L&T Construction Heavy Civil Infrastructure

Read more ...

Readily Biodegradable Soil Conditioning Foaming Agents - A New Technology
Mike A. Sposetti, Global Technical Manager TBM, Underground Construction, Master Builders Solution, Malta, and Manish Gautam, Product Segment Manager - UGC TBM Tunneling Projects, Master Builders Solution, Mumbai, discuss how readily biodegradable

Read more ...

Geotechnical challenges in Tunneling in Himalayas
G.B.Nagendra. General Manager - Projects, Konkan Railway Corporation, gives a first-hand experience of the adverse geological conditions encountered during construction of Tunnel T5 of the Katra-Dharam Section of the USBRL Project and the solutions

Read more ...

Cut & Cover Metro Stations & Other Underground Structures
Vinay Gupta, Director & CEO, Tandon Consultants, discusses the intricacies and issues in the construction of underground metro stations including strata survey during structural design, selection of methods and techniques of construction, traffic management

Read more ...

Importance of Pre-Injections Before Tunnel Front Advancement
Pre-injections or injections ahead of the excavation face in underground construction can, in many situations, offer significant advantages. This is particularly the case in difficult ground conditions like severe water ingress or mechanically

Read more ...

The Next-Gen Sandvik Tunnelling Jumbo Drills offer best-in-class operator comfort and safety
Sandvik's fully automatic, DT 922i and semi-automatic, DT 821C jumbo drills are enabling Max Infra to attain lower drilling costs per meter, with higher machine availability during the ongoing construction of the access tunnel

Read more ...

Tunnelling & Underground Projects Sharing Risks & Responsibilities
Rakesh Kumar Khali, Project Director-Hydro, Hindustan Construction Company Limited, Mumbai, describes the type of risks involved in underground construction projects, gives important guidelines to the tendering authorities and contractors

Read more ...

Recovery & Recycling of Excavated Tunnel Waste
Rock excavated in an average tunneling project is often considered waste and mostly finds its way to a landfill. Depending on the geology and excavation method used, the extracted material can have significant quality deviations

Read more ...