The Genesis of Underground EngineeringTunnel breakthrough at the Koralm Railway Tunnel between Carinthia and Styria (August 2018)

Harald Wagner, Chief Executive Office, DHW Pte.Ltd. Bangkok/Vienna
Regardless of the tunnelling technology used, tunnel designers decide the future success or failure at an early project stage. In fact, designers are the real managers of tunnel construction. The choice of design together with selected contract model is managing construction. Contract & Risk Management of Tunnels for any tunnelling technology should follow advanced contractual practices. Harald Wagner, Chief Executive Office, DHW Pte.Ltd. Bangkok/Vienna

The art of Tunnelling
Tunnelling is the art of dealing with “Geologic Uncertainties”. Different methods of tunnel construction are considered and their details deliberated upon as construction requires large excavations of soil, rock etc. However, modern equipment has made excavation and backfilling easier.

Tunnels are being constructed for roadways, railways, and even as waterways. In cities like Mumbai, Metro Rail works predominantly underground. There is a tendency in the development of public underground infrastructure projects to fund projects either on bi- or multi-lateral bases. It is in the interest of owners to achieve contractually well-structured and balanced contracts in accordance with international standards to increase transparency, as underground infrastructure projects are vulnerable to corruption, and mostly blamed on geologic uncertainties.

Through extensive training programs, backed by best business practices, there is an impact of added engineering value reflected in the life cycle cost and project success. The procurement phase has the greatest impact on the life cycle cost of projects, yet it is the least costly component. Contracts shall render “Geotechnology” coherent with essential clauses, detailed definitions, and a consistent structure. Buildings and engineering works are designed by, or on behalf of, the employer.

Risk shall be allocated to the party, which is best placed to control it, to bear it, and to deal with it. Acting as third party, contracts shall be drafted by consulting engineers who are experienced in the design and management of projects. Contracts should be complete and flexible, ranging over most needs and readily adaptable to fit requirements. The contract shall be administered by the engineer, appointed by the employer.

The stakeholders in the contract are the owner/employer, the contractor, and the engineer being the employer’s representative, whereas contractual clear relationships shall be established between employer and engineer as well as between employer and contractor. There shall be only an administrational relation between contractor and engineer. For the settlement of disputes, a dispute adjudication board shall be established above employer and contractor.

Contracts shall be featured by balanced terms and clauses, allowing for an application of common laws including civil laws. They shall be widely applicable under various project delivery and contracting concepts. More specific provisions shall be included regarding obligations of parties and their rights.

Structural & Contractual Tunnelling
The ground, forming a geostatic load resulting from excavation of a tunnel, can be turned into mass material providing support to any just excavated cavity. To achieve structural understanding, the engineering model had to be developed in an uncountable number of different geo-mechanical conditions.

The basic idea of an advanced Tunnel Construction Concept was born, whereas the ground itself, when properly treated and carefully controlled by monitoring, forms the most essential part of the lining. When looking into the interaction of lining and ground between stress, strain and time, the goal to be achieved is to be seen in the transfer of primary stress of the original equilibrium (prior to excavation) into secondary stress of the new equilibrium, after excavation and lining installation have been completed.

Due to the infinite variety of conditions and when compared with defined materials like concrete, shotcrete, steel and others, and in comparison with other civil engineering structures, e.g. in bridge construction, the use of universal applicable mathematic formulas for definition of the design of an underground structure is still to be seen in the context of geologic investigations and interpretations, latest state-of-the-art recommendations, guidelines, and, most important, on site construction experiences. It all results in modelling, respective design, and construction of the very tunnel structure.

Underground Structures in urban areas are almost universally applicable, and there has never been more experience available than today. Where the ground does not provide the required strength, there are means and methods for ground improvement available. The client along with his design consultant should decide (based on risk, safety, environmental impact, cost, and time), whether the implication caused by ground improvement does justify the choice of ground improvement measures.

In TBM Tunnelling as well as in Conventional Tunnelling, ground reactions e.g., surface settlements, deflections of tunnel linings, tunnel face reactions, and any impact to existing neighboring structures, need to be monitored and controlled by giving flexible responses via toolbox of additional support measures, as required.

Management procedures shall correspond with the latest developments. Late payment problems shall be tackled, and the role of the engineer updated. To have the best control of projects, the responsibility of the client must include proper organization in various design phases and his involvement in main project aspects in order to make good choices of most suitable conditions of contract. Upon project analysis, subject, and type of contract (construction only, design & build, etc), risk sharing (construct or be involved in design), intended management of contract/project, type/method of payment, shall be decided.

Objectives of infrastructure construction contracts are an increase of supply of e.g., energy through addition of renewable, low-carbon energy, strengthen capacity regarding preparation/implementation of economically, environmentally, and socially sustainable projects. There are two early project objectives, construction of Project itself and support for Capacity Building and Institutional Strengthening of developer.

Financing institution e.g., TWB, want to engage Consultants in support of the owner in the review and improvement of project management systems and process, especially with respect to schedule, contract and risk management. Consultant’s main task, envisaged to be carried out, is reporting.

Tunnel projects shall start with a comprehensive investigation of ground conditions by collecting samples from boreholes and other geophysical techniques. An informed choice can then be made of machinery and methods for excavation and ground support, which will reduce the risk of encountering unforeseen ground conditions. In planning routes, horizontal and vertical alignments optimization of ground and water conditions shall be achieved.

Independent from choice of tunnelling technology, geotechnical key factors are “stand-up time”, being the amount of time, a newly excavated cavern can support itself prior to any added structural support. Knowing this parameter allows the engineers to determine how far an excavation can proceed before support is needed, which in turn affects the speed, efficiency, and cost of construction.

The Curtailed Genesis of Tunnelling

The Genesis of Underground Engineering
1975 - Origin of Mined Metro Stations
Bochum Metro Section A3/A5. First Single & Double Track Shallow Soft Ground Tunnels using NATM Design. Geomechanic know how from “Mountain Tunnelling” got transferred into “Urban Tunnelling”. Experiences with Finite Element Calculations for the design of the Waldeck II Cavern Powerhouse have been used for the design of metro tunnels and metro stations to simulate ground behaviour and to design sprayed concrete support.
The Genesis of Underground Engineering
1978 – Origin of Universal Segmental Lining
Munich Metro, Section 5/9-5. Single Track Tunnels. Previous TBM experiences with one pass precast concrete lining segments have been published following Frankfurt Metro Projects. In Munich, precast single lined designed tunnel segments with unified, auto-connected and double converging segments in both joint types have been used first time. Station cross section has been expanded from 120 m2 (Bochum) to 180 m2 (Munich). Findings from the Geomechanic Technology of NATM design and construction have been transferred on a global scale into TBM Technology with single lined precast concrete segments.
The Genesis of Underground Engineering
1985 – Genesis of Universal Tunnelling Technology
About 40 years ago there have been intense discussions when it came to evaluation, choice and decision making between NATM/CTM (Conventional Tunnelling Method) and TBM (Tunnel Boring Machine Method), called Mechanized Tunnelling. Since then, a gradual approximation between the two Tunnelling Techniques, accompanied by in situ Observation & Monitoring has taken place.

Mechanized Tunnelling Technology
Various Types of TBMs are used to highly automate the entire tunnelling process, reducing tunnelling costs. In certain predominantly urban applications, tunnel boring is viewed as quick and cost-effective alternative to laying surface rails and roads. Disadvantages of mechanized tunnelling arise from usually large size equipment - difficulty of transporting the large machine to the site, or (alternatively) high cost of assembling on-site.

As both Techniques have Pro’s and Con’s, it is fair to state, that both Tunnelling Techniques have benefitted from each other. The fields of competition have shifted from Geomechanics towards Contract, Schedule, Cost, Geotechnical Baselines and Risk Management, with Innovation in Tender Document Preparation.

Conventional Tunnelling Method (CTM)
Also named “The New Austrian Tunnelling Method” (NATM) was developed in the 1960s, and is the best known of a number of engineering solutions that use calculated and empirical real-time measurements to provide optimized safe support to the tunnel lining. The main idea is to use geological stress of surrounding rock mass to stabilize the tunnel itself, by allowing a measured relaxation and stress reassignment into surrounding rock.

With Conventional Tunnelling, design parameter designation shall be carried out by the clients engineering team, by the consultant’s design offices, or by the construction contractors design team, where the consultant is cooperating closely with the client being finally responsible for design in all phases of the tunnel respectively the cavern project.

Various types of tunnels are dug in types of materials varying from soft clay to hard rock. The method of tunnel construction depends on such factors as the ground conditions, the ground water conditions, the length and diameter of the tunnel drive, the depth of the tunnel, the logistics of supporting the tunnel excavation, the final use and shape of the tunnel and appropriate risk management.

Tunnel Boring Method
Bored tunnel method is a modern technology, where tunnel boring machines are used which automatically work and makes the entire tunnelling process easier. It is also quicker process and good method to build tunnel in high traffic areas. Tunnels boring machines (TBM’s) are available in different types suitable for different ground conditions. These machines can be used in difficult conditions such as below the water table etc. A special pressurized compartment is provided for TBM to work in below water table conditions. The workers should not enter that compartment except for repair works. Care should be taken while TBM is in working conditions.

Cut & Cover, Immersed, Other Hybrid Technologies
These technologies of tunnel construction are generally used to build shallow tunnels. In this method, a trench is cut in the soil and it is covered by some support which can be capable of bearing load on it. The cutting can be done by two methods. One is bottom-up method in which a tunnel is excavated under the surface using ground support. Another method is top-down method in which side support walls are constructed first by slurry walling method or contiguous bored piling. Then roof is located on the top of the walls and excavation is carried out. Finally, base slab is constructed.

This report on “Infrastructure Changing the World” by Harald Wagner c/o DHW Consulting Engineers, Bangkok/Vienna has been supported by TAI (Tunnelling Association of India), associated with CBIP (Central Board of Irrigation and Power) of India. Underground infrastructure engineering is one of the most challenging fields of advanced technology as it requires the capability to combine structural engineering with geotechnical and environmental engineering. The report has been derived from the book “Usable Grounds to Unite Sustainable Above and Below Grounds”, which will be launched by the end of 2022. It is written to guide academics and practitioners of the underground construction industry, project owners, consultants, contractors as well as young engineers into the world of underground infrastructures. Since, every underground infrastructure project is unique, the book attributes special emphasis to the satisfaction of engineers resulting from innovative solutions.
Sela Tunnel Project - Overcoming The Impossible
The responsibility for construction and maintenance of Balipara-Charduar-Tawang (BCT) Road has been entrusted to Border Roads Organisation (BRO). The 317.520 km long road connects West Kameng and Tawang districts of Arunachal Pradesh to the rest

Read more ...

Slurry TBM ‘Channel Express’ launched by CRCHI for working in Water Supply Tunnels in Singapore
On February 1, 2023, CRCHI attended the launching ceremony of its Slurry TBM ‘Channel Express’. It will be used in the construction of key water supply tunnel project TWRP Pipeline Contract 1 in Singapore where it will bore 1.6km with the inner diameter

Read more ...

China’s Largest TBM - With Panda Face Emerges From Tunnel
On 12 December 2022 ‘Jinxiu’ - China’s largest EPB TBM developed by CRCHI - marked the first smooth breakthrough of the Jinxiu Tunnel, a key control project of the Chengdu-Zigong high-speed railway. Jinxiu is China’s largest diameter EPB TBM with

Read more ...

STRUCINSPECT Technology Transforms Inspection of Los Angeles Metro Tunnel Network
With drones, multispectral optics, and AI, Austrian joint venture transforms tunnel inspection in the US. The world’s first infrastructure lifecycle hub taps the rapidly growing global market for infrastructure inspections. The remarkable thing about

Read more ...

CRCHI showcases total solutions of Underground Engineering Equipment
China Railway Construction Heavy Industry Corporation Limited (CRCHI) brought the whole industry chain products and solutions to bauma CONEXPO INDIA 2023. CRCHI exhibited TBMs, drilling and blasting method equipment, cotton pickers, and other

Read more ...

Sandvik sets up new factory; hands over first ‘made in India’ tunnelling jumbo to KSR Group, Hyderabad
In a historic event held on 30th January, 2023 Sandvik proudly presented the key of the first ‘made in India’ DT820 Tunnelling Jumbo to Mrs. and Mr. Koneru of KSR Group, Hyderabad. The machine was rolled out from Sandvik’s newly set-up state-of-the-art

Read more ...

CRCHI Slurry TBM ‘Avni’ Helps Make a Breakthrough in Bangalore Metro Project
The 6.6m Slurry TBM developed by CRCHI exited the tunnel at Vellara Station, Phase II of Bangalore Metro in India, becoming the first TBM to complete the breakthrough for the whole line of the project. Avni is one of the four slurry TBMs provided by CRCHI

Read more ...

The Bolter Miner - A Technology Revolution for Roadway Development in Underground Coal Mining
In India, coal is still the primary source of energy; over the past few years, there has been quantum jump in coal production level, but it was mostly due to the high percentage share from the opencast sector. The country is witnessing a fast

Read more ...

CRCHI emerges as provider of total underground engineering equipment and solutions
China Railway Construction Heavy Industry Corporation Limited (CRCHI) showcased its comprehensive range of equipment and products at bauma that included solutions for the whole industry chain in the field of

Read more ...

Herrenknecht AG wins bauma Innovation Award 2022 for development of continuous tunnelling
Herrenknecht AG won the highly coveted award bauma Innovation Award 2022 in the category “Machine Technology” for the new development of continuous tunnelling. The award was given for the next innovation boost in the mechanized

Read more ...

Managing Geological Complexity in BVC and PAC of Tehri PSP, India - A case study
Tehri hydroelectric project is located on the left bank of River Bhagirathi in the state of Uttarakhand. Tehri Pumped Storage Project (PSP) comprising 4 Nos of reversible pump-turbine units of 250 MW each, involves construction of an underground Machine Hall

Read more ...

TBM driving under low overburden by adopting innovative methodology
TBM mining in urban areas particularly under low overburden (less than 0.5D, D = tunnel Dia) is a big challenge to design team as well as execution team. While working in a Lucknow metro project, the metro authorities encountered a stretch where TBM had to cross

Read more ...

Tunnel Ventilation System Basic Concepts and Designing Principles
The term ventilation combines several functions such as smoke extraction, pollution ventilation, and ventilation for environmental purpose. The design of a ventilation system is usually based on three scenarios: During construction: to provide external

Read more ...

CRCHI Mega Slurry TBM ‘Jinghua’ Assists the First Tunnel Section Breakthrough of Beijing East Sixth Ring Road Reconstruction Project
In September 2022, the Beijing East Sixth Ring Road Reconstruction Project reported another good news: the CRCHI mega slurry TBM ‘Jinghua’ smoothly reached the intermediate air shaft, marking the project’s achievement. The maximum excavation diameter

Read more ...

TERRATEC EPBMs ready to tackle Kanpur Metro’s 1st Underground Section in India
TERRATEC celebrated the successful site acceptance testing of two 6.52m diameter Earth Pressure Balance Tunnel Boring Machines (EPBMs) for Uttar Pradesh Metro Rail Corporation (UPMRC) for Corridor-1 of Kanpur MRTS Project (KNPCC-05) in India. The two 6.52m

Read more ...

Tunnelling Asia 2022 - International Conference on Underground Space
Tunnelling Asia 2022, organized by TAI, which took place in Mumbai during 27th and 28th June, saw a huge gathering of delegates/engineers from all around the world. The theme of the conference: ‘Underground Space: Need of the Day’ focused on

Read more ...

Hydraulic Heave Failure Mitigation Approach for the construction of the Deepest Metro Ventilation and Egress Shaft in India
Dr. Lakshmana Rao Mantri, Assistant General Manager (Designs), and Satya Narayan Kunwar, Project Manager, AFCONS Infrastructure Ltd. , discuss the design and construction challenges of constructing India’s deepest underground metro ventilation

Read more ...

Creating Zero-Carbon Tunnels
Despite a daunting timeline set by the Paris Accord, zero-carbon tunnels are within reach, provided the right solutions are implemented. Er. Vasileios (Bill) Paoulos, CMT, CMRL, L&T Construction Heavy Civil Infrastructure

Read more ...

Readily Biodegradable Soil Conditioning Foaming Agents - A New Technology
Mike A. Sposetti, Global Technical Manager TBM, Underground Construction, Master Builders Solution, Malta, and Manish Gautam, Product Segment Manager - UGC TBM Tunneling Projects, Master Builders Solution, Mumbai, discuss how readily biodegradable

Read more ...