Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads


Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads

In near future, the cost of bitumen will go on increasing. So, various alternates to construct the roads are to be explored. Though concrete roads are one of the good alternates, but still their use is limited. This paper discusses the merits and demerits of all types of pavements construction and proposes their optimum use.

Dr Praveen Kumar, Professor, Transportation Engineering Group, Civil Engineering Department, IIT Roorkee. Ankit Gupta, IIT Roorkee.

Introduction

Development of a country depends on the connectivity of various places with adequate road network. Roads are the major channel of transportation for carrying goods and passengers. They play a significant role in improving the socio-economic standards of a region. Roads constitute the most important mode of communication in areas where railways have not developed much and form the basic infra structure for the development and economic growth of the country. The benefits from the investment in road sector are indirect, long-term and not immediately visible. Roads are important assets for any nation. However, merely creating these assets is not enough, it has to be planned carefully and a pavement which is not designed properly deteriorates fast. India is a large country having huge resource of materials. If these local materials are used properly, the cost of construction can be reduced. There are various type of pavements which differ in their suitability in different environments. Each type of pavement has it’s own merits and demerits. Despite a large number of seminars and conference, still in India, 98% roads are having flexible pavements. A lot of research has been made on use of Waste materials but the role of these materials is still limited. So there is need to take a holistic approach and mark the areas where these are most suitable.

Types of Pavements

There are various type of pavements depending upon the materials used. A briefs description of all types is given here.

Flexible Pavements

Bitumen has been widely used in the construction of flexible pavements for a long time. This is the most convenient and simple type of construction. The cost of construction of single lane bituminous pavement varies from 20 to 30 lakhs per km in plain areas. In some applications, however, the performance of conventional bitumen may not be considered satisfactory because of the following reasons:
  1. In summer season, due to high temperature, the bitumen becomes soft resulting in bleeding, rutting and segregation finally leading to failure of pavement.
  2. In Winter season, due to low temperature, the bitumen becomes brittle resulting in cracking, raveling and unevenness which makes the pavement unsuitable for use.
  3. In rainy season, water enters the pavement resulting into pot holes and sometimes total removal of bituminous layer.
  4. In hilly areas, due to sub zero temperature, the freeze thaw and heave cycle takes place. Due to freezing and melting of ice in bituminous voids, volume expansion and contraction occur. This leads to pavements failure.
  5. The cost of bitumen has been rising continuously. In near future, there will be scarcity of bitumen and it will be impossible to procure bitumen at very high costs.
Recently, a large number investigations have demonstrated that bitumen properties (eg. viscoelsticity and temperature susceptibility) can be improved using an additive or a chemical reaction modification.

Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads

The use of polymer modified bitumen's (PMBs) to achieve better asphalt pavement performance has been observed for a long time. The improved functional properties include permanent deformation, fatigue and low temperature cracking. The properties of PMVs are dependent on the polymer characteristics and content and bitumen nature, as well as the blending process. Despite the large number of polymeric products, there are relatively few types which are suitable for bitumen modification (2). The polymers that are used for bitumen modification can be divided onto two broad categories, namely plastomers and elastomers. Elastomers have a characteristically high elastic response and, therefore, resist permanent deformation by stretching and recovering their initial shape. Plastomers from a tough, rigid, three dimensional network to resist deformation. The thermoplastic rubber, styrene butadiene-styrene (SBS), is an example of an elastomer and the thermoplastic polymer, ethylene vinyl acetate (EVA), is an example of a plastomer. One of the principal plastomers used in pavement applications is the semi-crystalline copolymer, ethylene vinyl acetate (EVA). EVA polymers have been use in road construction for more than 20 years in order to improve both the workability of the asphalt during construction and its deformation resistance in service. Figure 1 to 6 show the effect of these modifiers to bitumen before and after ageing.

Semi Rigid Pavements

The pavements constructed using the waste materials, which are more strong the traditional aggregates may be treated as Semi-Rigid Pavement. A lot of research work has been done in this direction. But the work in terms of real construction is not visible.

Some examples of real construction are given below:

Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads

Visakhapatnam Steel Plant (VSP) at Visakhapatnam (AP) is one of the major steel plants producing steel in the country. Granulated Blast Furnace Slag (GBFS) is also generated as a by-products of steel. Prior to 1991, a major portion of GBFS was being used by the cement manufacturing industries located in the nearby areas but its utilization in this industry has been decreasing gradually. This material has, therefore, been piling up gradually due to increased production as a waste in the plant area an posing serious problem for its disposal. Two roads namely Ankapalli-Pudimadaka Road (AP road) – a MDR and Bheemunipatnam-Narsipatnam road (NB road) – a State Highway were selected for test track construction. The existing width of the road pavement was about 3.5m and as per state PWD programme, has to be increased to 5.5m by 1m widening the carriageway on both sides of the road. The pavement thickness worked out to be 425mm for the traffic parameter of 3 million standard axle (msa) for BN road and 480mm for the traffic parameter of 1.25 msa in case of AP road. The pavement compositions were then, worked out considering the strength of GBFS, GBFS subgrade soil/moorum mixes for the two roads.

In another project, Conventional moorum, gravel, sand or lime/cement stabilised local soil were used in subbase layer of a road pavement. In order to compare the structural performance of these materials with the steel industry wastes, a small test track was constructed at Bokaro. The selection of different test sections was made on the basis of laboratory test results as discussed in the previous sections. The details of the test sections are as follow:

Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads

In order to structurally evaluate the different specifications/test sections, plate load tests were conducted on each section using a 30cm diameter plate. The load deflection values were recorded by applying incremental load. Plate load test was also carried out on subgrade soil. Since with an ordinary truck, only limited magnitude of reaction can be obtained, a heavy 35 tonnes dumper was used for carrying out place load test. Based on Burmister's two layer theory, the modulus of elasticity for different specifications were worked out and are given in Table-2. The ratings based on load carrying capacity of different sections are also indicated in the same table.

Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads

Similarly, Bandamunda Jaraikala road, which is a major district road near Rourkela, was chosen for construction using the waste material from Rourkela Steel Plant. For the experimental test sections on Bandamunda Jaraikala Road, Rourkela. Where 1.8m widening on both the sides of the existing road was proposed, a total number of 11 test sections using steel plant wastes were laid. During rainy season, heavy rains are there and water passes across the road. While formulating specifications, attempts were made to make maximum utilization of steel plant by-product such as BF slag, SMS, granulated slag and flyash, etc. It includes one control test section, which comprises conventional road building materials for comparison purpose. It shows that except right portion of sections 1,2 all sections were structurally sound after two months of construction.

Rigid Pavements

Provisions of Rigid, Semi Rigid and Flexible Pavements as Rural Roads
Rigid pavements, though costly in initial investment, are cheap in long run because of low maintenance costs. There are various merits in the use of Rigid pavements (Concrete pavements) are summarized below:
  1. Bitumen is derived from petroleum crude, which is in short supply globally and the price of which has been rising steeply. India imports nearly 70% of the petroleum crude. The demand for bitumen in the coming years is likely to grow steeply, far outstripping the availability. Hence it will be in India's interest to explore alternative binders. Cement is available in sufficient quantity in India, and its availability in the future is also assured. Thus cement concrete roads should be the obvious choice in future road programmes.
  2. Besides the easy available of cement, concrete roads have a long life and are practically maintenance-free.
  3. Another major advantage of concrete roads is the savings in fuel by commercial vehicles to an extent of 14-20%. The fuel savings themselves can support a large programme of concreting.
  4. Cement concrete roads save a substantial quantity of stone aggregates and this factor must be considered when a choice pavements is made,
  5. Concrete roads can withstand extreme weather conditions – wide ranging temperatures, heavy rainfall and water logging.
  6. Though cement concrete roads may cost slightly more than a flexible pavement initially, they are economical when whole-life-costing is considered.
  7. Reduction in the cost of concrete pavements can be brought about by developing semi-self-compacting concrete techniques and the use of closely spaced thin joints. R&D efforts should be initiated in this area.

Concrete Pavements-Why and Why Not?

Despite the above facts, long time research and high level well wishers concrete roads are still only 2% in the country. Every years, there are many seminars in the country which give emphasis over the use of Concrete roads. In PMGSY also, a separate code has been issued to design the concrete roads. But the percentage of concrete roads is less than 2% in this Yojna also. First of all it is to be understood why concrete roads fall?
  1. Concrete required even days curing. At least for one day, nothing should ply over the pavement. But in actual, people feel that it wastage of their time. So like on bituminous pavements, they start playing the vehicles over concrete pavements also.
  2. Some researchers have proposed thin bituminous section without using steel in it. Such sections may suit thin lanes where only scooters or cars are plying but on rural roads or highways, where there is no control over loading, these concrete roads are bound to fail.
  3. Concrete roads cannot be compared with concrete beams, columns or slabs where sufficient curing time is available and the load over that comes after gaining sufficient strength.
So considering the above facts it can be concluded that Concrete roads should not flagged as cheaper roads. Rather they should be announced as good roads. If one has sufficient funds and he traffic can be diverted for sufficient time only then, concrete roads will go on failing and blame will go to the technology rather than construction deficiencies.

Conclusions

Based on the above discussion, following conclusions are made:
  • Concrete roads are good roads but not cheaper roads. These roads should be considered only if sufficient funds are available. The thickness of the pavement and the reinforcement should not be compromised.
  • Semi Rigid pavements should be constructed in nearby areas of steel plants where these materials are available free of cost. In this regard, Government may pass an ordinance for compulsory use of these materials in such areas.
  • Bitumen is going to more costly in future. So it should be used very judiciously. Modification like CR, EVA and SBS may be used to reduce the susceptibility of the bitumen. It will reduce the quantity of bitumen also.

Reference

  1. Kumar Praveen, Kumar Ashwani, Dhawan, P.K. and Murty, A.V.R., Performance of Granulated Blast Furnace Slag in Road Construction – A Case Strudy, Indian Highways, July 1999.
  2. Kumar Praveen, Mehndiratta H.C. and Kumar Anant, "Economic Analysis of Rural Road Construction Under PMGSY" Indian Highways, Indian Roads Congress, Vol 133, No. 8 August 2005, pp 21-33.
GAEPL Achieves Record Paving of 100 lane-km in 100 hours
Ghaziabad Aligarh Expressway Private Limited (GAEPL), under the guidance of Cube Highways, has set an example of speedy, safe, and sustainable road construction through research, integration of advanced technology, following best international practices

Read more ...

Indian Companies Delivering Projects Overseas
External affairs minister S. Jaishankar during his visit interacted with the workers and the senior staff, and lauded the role of Indian infra companies, saying that he was “impressed by their enthusiasm”. “Strong economics will complement shared values in taking

Read more ...

NHAI awards 6,003 km of highway projects in FY23
According to Motilal Oswal Financial Services, the infra project awarding activity picked up and gathered pace in Q4 of FY23, with NHAI awarding total projects of 6,003 km in FY23, much below its FY23 target of 6,500 km. The total value of projects awarded

Read more ...

Is the Indian Road Sector Navigating a Smooth Journey?
This report covers the current state of the Indian Road Sector, performance of road projects under Hybrid Annuity Model, financial performance of major road developers, and the outlook for FY24. CareEdge Ratings analysed 235 HAM projects awarded between

Read more ...

Balanced Mix Design for Bituminous Mixes
As more than 90% of the roads in India have bituminous surfacing, a proper bituminous mix design also assumes significance for better performance of the bituminous roads. India is currently witnessing huge investments by the Indian Government towards

Read more ...

Sustainable Road Construction in Hilly Region
Siksha Swaroopa Kar, Principal Scientist, Amit Kumar, Technical Officer, Krishan, Technician, Flexible Pavement Division, CSIR-CRRI, New Delhi, discuss mechanized laying of cold bituminous layer, the mixer and paver that have been fabricated, and the effectiveness

Read more ...

Implementation of Road Maintenance Management System - Benefits & Technologies
The maintenance of road pavements is essential to ensure the safety, reliability, and sustainability of road networks. A road maintenance management system (RMMS) involves effective management of resources to optimize the life cycle of roads, reduce maintenance

Read more ...

Replacement of Steel Reinforcement with  Synthetic Fibre for Concrete Pavement & Floor
Manoj Didwania, Adani Total Gas Ltd, Dharamsinh Desai University (DDU-Nadiad), Cept University, presents a paper on the use of Macro Synthetic Reinforcement Fibre (MSRF) as full or partial replacement of Steel Reinforcement for Concrete Pavement

Read more ...

GTI® Reinforced Soil Slope System
GTI® is involved in developing environmentally friendly construction products and systems, which are critical for achieving infrastructure growth in a sustainable manner. The company’s GTI® Sloping Fascia Unit and the new system GTI® Reinforced Soil Slopes

Read more ...

CRISIL: Debt to rise for road developers amid strong revenue growth
Sizeable equity commitments in under-construction projects and rising working capital requirement will increase the debt burden of road developers, though revenue growth will also be high in the next two fiscals driven by strong awarding and execution

Read more ...

Indian Toll Roads to witness moderation in growth to high single digits in FY2024 after a stellar 17-20% growth in FY2023: ICRA
WPI for December 2022 is significantly lower at 5.0% against WPI of 14.27% in December 2021. ICRA Ratings expects the toll road projects growth to moderate to high single digit in FY2024 after a 17-20% growth witnessed in FY2023 with moderation in the

Read more ...

Road Over Umling-La Pass at 19,024 Feet
Construction of World’s Highest Motorable Road Chismule – Demchok In Eastern Ladakh Using Non-Frost Susceptible Sub-Base. Union Territory of Ladakh is located at approx 11,000 feet above Mean Sea Level (MSL). The area experiences extreme cold

Read more ...

BRO Uses Eco-Friendly Steel Slag For Road Construction
Steel slag, a by-product of steel making, is produced during the separation of the molten steel from impurities in steelmaking furnaces. This process generates slag as a molten liquid melt and is a complex solution of silicates and oxides that solidifies

Read more ...

Potholes to become history breakthrough by Zydex
Vadodara-based Zydex Industries has developed a new technology in road construction that enables roads to resist cracking under heavy traffic loads and cyclic weather variations. The speciality chemicals company has been at the forefront of R&D and implementation

Read more ...

Expected Increase in M&A and Refinancing Activity for HAM Projects in India: ICRA
According to the ratings agency ICRA, there is expected to be an increase in mergers and acquisitions (M&A) and refinancing activity in highway asset management (HAM) projects in the upcoming quarters. Approximately 105 HAM projects, with a total bid project

Read more ...

Prestressed Precast Concrete Pavement (PPCP)TM
PPCP Technology can help build roads of good quality, which are highly durable, can be built quickly, and do not require extensive maintenance. The construction industry is primarily concerned with two issues: construction quality control and the speed

Read more ...

More Efficient Road with iROADS Asset Management
iROADS Asset Management System enables significant optimization of road maintenance costs while ensuring a well-maintained road network and road assets. India has the second largest road network in the world comprising national

Read more ...

Upgradation of PMGSY Road Using Full Depth Reclamation Process in the State of Nagaland
Rapid growth in industrial development and economy in last two decades has demanded upgradation of the existing road network in the country. Though there is a huge road network in the country, it is still inadequate to meet accessibility and mobility requirements

Read more ...

Erosion Control for Green Highway Construction
Namrata Bichewar, Regional Manager - Maharashtra, Gabion Technologies India Pvt Ltd, discusses the company’s contribution in constructing green highways using Bio-Engineering Erosion Control methods and solutions. The government plans to construct 26 green expressways

Read more ...

Stone Matrix Asphalt is enabling durable and maintenance-free roads in India
A Stone Matrix Asphalt (SMA) pavement laid at Parimal Underpass in Ahmedabad Municipal Corporation has completed 7 years. The underpass, which used to get submerged under almost 2m depth of water due to waterlogging in the monsoons every year

Read more ...