Fiber Reinforced Concrete in Pavements


Dr. K.M.Soni, Superintending Engineer, Central P.W.D., New Delhi

Fiber reinforced concrete is defined as a composite material consisting of concrete reinforced with discrete randomly but uniformly dispersed short length fibers. The fibers can be made of steel, polymer or natural materials. Woven fabrics, long wires, bars, and continuous wire mesh are not considered discrete fibers.

Fiber reinforced concrete is considered as a material of improved properties and not as reinforced cement concrete whereas reinforcement is provided for local strengthening of concrete in tension region. Since in Fiber reinforced concrete, fibers are distributed uniformly in concrete, it has better properties to resist internal stresses due to shrinkage. As fibers improve specific material properties of the concrete, impact resistance, flexural strength, toughness, fatigue resistance, ductility also improve.

Fibers generally used in cement concrete pavements are steel fibers and organic polymer fibers such as polypropylene and polyester.

Steel Fiber Reinforced Concrete

Steel fibers have been used for a long time in construction of roads and also in floorings, particularly where heavy wear and tear is expected. Specifications and nomenclature are important for a material to be used as the tenders are invited based on specifications and nomenclature of the items. Such nomenclature is not available in Delhi Schedule of Rates. In a work where steel fiber reinforced concrete was used for overlays just like flooring, the following nomenclature can be adopted for concreting of small thickness.

Providing and laying 40 mm steel fiber reinforced cement concrete in pavement (in panels having area not more than 1.5 sqm) consisting of steel fiber @ 40kg per cubic meter of concrete and cement concrete mix of 1:1.95:1.95 (1 cement: 1.95 coarse sand of fineness modulus 2.42: 1.95 stone aggregate 10 mm and down gauge of fineness modulus 5.99) over existing surface i/c cement slurry, consolidating, tapping, and finishing but excluding the cost of steel fibers which shall be paid separately, complete as per direction of Engineer in Charge (Cement to be used shall be OPC 43 grade and sand and aggregate have to be washed).

Second item of fibers was provided separately as “Providing and mixing steel fibers of dia 0.45 mm in cement concrete duly cut into pieces not more than 25 mm in length.”

Though the item of steel fiber reinforced concrete has been provided with a design mix of concrete, which is almost of 1:2:2 grading, it can now be used of mix like M30 or M35. Since in the executed item, the thickness was to be restricted, the stone aggregates used were of 10 mm size and below however, in case of the concrete of more than 75 mm thickness, stone aggregates of 20 mm grading can be used.

The construction was carried out more than a decade back. It isobserved that the performance of the concrete is satisfactory even after many years of construction (Figure 1). Even, no corrosion has been observed in the steel fibers. In fact the concreting has been done just like flooring item in this case over already existing hard surface. In such a case a bonding coat should also be provided like a coat of cement slurry. The fiber reinforced concrete has been provided in small panels considering the workability. Though vacuum dewatered concrete has not been done with steel fiber reinforced concrete but the same is also possible. Vacuum dewatered concrete, though cannot be done in small thickness like 40 or 50 mm but can be used if thickness is 100 mm or more.

Polymer Fiber Reinforced Concrete

Polymeric fibers are being used now because of their no risk of corrosion and also being cost effective (Sikdar et al, 2005). Polymeric fibers normally used are either of polyester or polypropylene. Polymer fiber reinforced concrete (PFRC) was used on two sites with ready mix concrete and Vacuum dewatering process.

The nomenclature can be used in the works as given here.

"Providing and laying ready mix fiber reinforced cement concrete of M35 grade (The concrete shall also have minimum works test beam flexural strength of 40 kg per sqm at 28 days) in required slope and camber in panels i/c shaping at drainage points as required using cementitious materials not less than 435 kg per cu‎m of finished concrete from ACC/L&T/AHLCON/ UNITECH or equivalent batching plant for all leads and lifts with Fibercom-CF/Fibermesh/Recron or equivalent (100 % virgin synthetic fiber size 12 mm long) to be mixed @ 900 grams per cu‎m of concrete i/c finishing with screed vibration, vacuum dewatering process, floating, trowelling, brooming and normal curing etc. complete as per standard manufacturer’s specifications and as per direction of Engineer’s in charge (All related equipment shall be arranged by the contractor. Cost of centering, shuttering, grooving etc. shall be paid separately. Design Mix shall be got approved from the Engineer in Charge).

In both the sites, vacuum dewatered concrete was used. Both the sites are to be used for parking. In a site, fiber reinforced concrete was used over a base cement concrete of lean mix of 1:4:8 (Figure 2) while in other site it was laid over water bound macadam (WBM) (Figure 3).

When dewatered concrete it has no problem of water being coming out on surface during compaction process but when it is done over WBM, a lot of concrete water is soaked by WBM and thus the concrete loses the water to WBM and the water which comes out during dewatering/compaction process is not in same quantity asin case of lean concrete. It appears that it is better to provide base concrete than WBM as the base. The groove was made in one case before setting of concrete and also panels were cast with expansion joints in one direction. No cracks were observed in the direction in which expansion joints were provided assuming this is longitudinal direction. In lateral direction, no joints were provided and the width of such panel was about 12 m. It was later observed that cracks have developed in this direction (Figure 4).

As it is known that the width of 12 m is too long for expansion/ contraction. It has been observed that almost at about one–third of the panel width, such cracks developed i.e. size of panel from one side is about 4 m and from other side it is about 8m. From the site observation, it is therefore inferred that the panel should have the size of about 4m x 4m in the temperature conditions of Delhi however small variation can also be made as per site conditions. In other case, the contractor delayed the cutting of grooves and thereafter the area was occupied due to some urgent requirements, the cracks in both the directions developed. The cracks were almost in line. Later on the grooves were made through cutters. It has been observed that the distance of cracks in one side was almost near to 4 m and on other side at about 7 to 9 m (Figure 5). Thus from this case study also, inference can be made that grooves if made in panels of 4m x 4m, it would be appropriate.

In both the cases, no lateral grooves were made, as working was not a problem due to use of vacuum dewatering process. In both the cases, horizontal line cracks have been observed indicating that the grooves in other direction are also essential. From this, it is imperative that polymer fiber reinforced concrete should be laid in panels or grooves should be provided so that concrete acts like in panels. Cutting grooves is easy as it can be made after casting of the concrete. But it should not be delayed for long and should be made before concrete achieves its desired strength. The size of panels may be kept around 4m x 4m.

Conclusions

Fiber reinforced concrete has advantage over normal concrete particularly in case of cement concrete pavements. Polymeric fibers such as polyester or polypropylene are being used due to their cost effective as well as corrosion resistance though steel fibers also work quite satisfactorily for a long time. It appears that fiber reinforced concrete should be laid on base concrete of lean mix such as 1:4:8 cement concrete rather than over WBM and provided with grooves in panels of about 4m x 4m to avoid expansion/ contraction cracks. Grooves can be made after casting of concrete through cutters.

References

Sikdar, P.K., Gupta, Saroj, Kumar Satander (2005). Application of Fiber as Secondary Reinforcement in Concrete. Civil Engineering and Construction Review, December issue, pp 32-35.,
NBM&CW May 2007
Performance of Thin White Topping (TWT) Overlay for NH-848

Performance of Thin White Topping (TWT) Overlay for NH-848

Vikas V. Thakar, MD, Pavetech Consultants India, presents the uses and advantages of TWT as a cost-effective treatment and a sustainable solution for rehabilitating and strengthening of flexible pavements, as seen in the NH-848 Nashik

Read more ...

REJUPAVE Technology for High RAP Recycling of Bituminous Pavement

REJUPAVE Technology for High RAP Recycling of Bituminous Pavement

Satish Pandey, Principal Scientist at CSIR-CRRI, New-Delhi, and Associate Professor, Academy of Scientific and Innovative Research, gives a brief overview of Hot Mix recycling process using bio-oil based rejuvenator REJUPAVE to facilitate

Read more ...

Safety Challenges On Indian Roads

Safety Challenges On Indian Roads

S.K. Nirmal, Secretary General, Indian Roads Congress, Director General (Road Development) & Special Secretary (Retd), MoRTH, gives an overview of India’s road network, causes of road accidents, and the safety measures and policies required

Read more ...

Dynapac Machines Deployed on Prestigious Palkhi Marg Project in Maharashtra

Dynapac Machines Deployed on Prestigious Palkhi Marg Project in Maharashtra

The Palkhi Marg holds deep significance as a pathway of faith for devotees of Lord Vitthal. Every year, thousands of ‘warkaris’ embark on a spiritual journey to the temple town of Pandharpur in Maharashtra. With the vision to create a Bhakti Marg and ensure

Read more ...

Delhi Vadodara Expressway Package-1 An overview

Delhi Vadodara Expressway Package-1 An overview

The Delhi-Vadodara Expressway is a part of the most anxiously awaited Delhi-Mumbai Expressway - the foundation stone for which was laid on March 8th 2019. Also referred to as the Delhi-Mumbai Industrial Corridor, it is planned as part of the Bharatmala

Read more ...

Bonded Rigid Pavement - A New Edge Concrete Pavement

Bonded Rigid Pavement - A New Edge Concrete Pavement

The exponential growth of the highway infrastructure in the past two decades has increased demand for long-lasting, durable pavements. Rigid pavements are suitable for heavily trafficked areas and are found to be performing satisfactorily with minimum

Read more ...

BRO Builds ‘Zero Fatality Corridors’ in Arunachal Pradesh

BRO Builds ‘Zero Fatality Corridors’ in Arunachal Pradesh

Through its unwavering commitment to road safety, eco-conscious practices, and visionary solutions, the Border Roads Organisation is elevating the standard of road infrastructure development in India. In Arunachal Pradesh, its contributions

Read more ...

Engineering Measures for Pothole Prevention

Engineering Measures for Pothole Prevention

Roads, pavements, and other paved surfaces have depressions in them called potholes which are caused by a variety of conditions. They not only present a serious risk to traffic and pedestrians, but also necessitate expensive repairs by local governments and

Read more ...

Pavement Marking Essential For Road Safety

Pavement Marking Essential For Road Safety

Vivek Singh, Founder, BuildStreet delves into the significance of pavement marking, its objective, and importance, with a focus on Hot Applied Thermoplastic paint - the predominant choice for road markings in India, its technical aspects, application methodology

Read more ...

GAEPL Achieves Record Paving of 100 lane-km in 100 hours

GAEPL Achieves Record Paving of 100 lane-km in 100 hours

Ghaziabad Aligarh Expressway Private Limited (GAEPL), under the guidance of Cube Highways, has set an example of speedy, safe, and sustainable road construction through research, integration of advanced technology, following best international practices

Read more ...

Indian Companies Delivering Projects Overseas

Indian Companies Delivering Projects Overseas

External affairs minister S. Jaishankar during his visit interacted with the workers and the senior staff, and lauded the role of Indian infra companies, saying that he was “impressed by their enthusiasm”. “Strong economics will complement shared values in taking

Read more ...

NHAI awards 6,003 km of highway projects in FY23

NHAI awards 6,003 km of highway projects in FY23

According to Motilal Oswal Financial Services, the infra project awarding activity picked up and gathered pace in Q4 of FY23, with NHAI awarding total projects of 6,003 km in FY23, much below its FY23 target of 6,500 km. The total value of projects awarded

Read more ...

Is the Indian Road Sector Navigating a Smooth Journey?

Is the Indian Road Sector Navigating a Smooth Journey?

This report covers the current state of the Indian Road Sector, performance of road projects under Hybrid Annuity Model, financial performance of major road developers, and the outlook for FY24. CareEdge Ratings analysed 235 HAM projects awarded between

Read more ...

Balanced Mix Design for Bituminous Mixes

Balanced Mix Design for Bituminous Mixes

As more than 90% of the roads in India have bituminous surfacing, a proper bituminous mix design also assumes significance for better performance of the bituminous roads. India is currently witnessing huge investments by the Indian Government towards

Read more ...

Sustainable Road Construction in Hilly Region

Sustainable Road Construction in Hilly Region

Siksha Swaroopa Kar, Principal Scientist, Amit Kumar, Technical Officer, Krishan, Technician, Flexible Pavement Division, CSIR-CRRI, New Delhi, discuss mechanized laying of cold bituminous layer, the mixer and paver that have been fabricated, and the effectiveness

Read more ...

Implementation of Road Maintenance Management System - Benefits & Technologies

Implementation of Road Maintenance Management System - Benefits & Technologies

The maintenance of road pavements is essential to ensure the safety, reliability, and sustainability of road networks. A road maintenance management system (RMMS) involves effective management of resources to optimize the life cycle of roads, reduce maintenance

Read more ...

Replacement of Steel Reinforcement with  Synthetic Fibre for Concrete Pavement & Floor

Replacement of Steel Reinforcement with Synthetic Fibre for Concrete Pavement & Floor

Manoj Didwania, Adani Total Gas Ltd, Dharamsinh Desai University (DDU-Nadiad), Cept University, presents a paper on the use of Macro Synthetic Reinforcement Fibre (MSRF) as full or partial replacement of Steel Reinforcement for Concrete Pavement

Read more ...

GTI® Reinforced Soil Slope System

GTI® Reinforced Soil Slope System

GTI® is involved in developing environmentally friendly construction products and systems, which are critical for achieving infrastructure growth in a sustainable manner. The company’s GTI® Sloping Fascia Unit and the new system GTI® Reinforced Soil Slopes

Read more ...

CRISIL: Debt to rise for road developers amid strong revenue growth

CRISIL: Debt to rise for road developers amid strong revenue growth

Sizeable equity commitments in under-construction projects and rising working capital requirement will increase the debt burden of road developers, though revenue growth will also be high in the next two fiscals driven by strong awarding and execution

Read more ...

To get latest updates on whatsapp, Save +91 93545 87773 and send us a 'Saved' message
Click Here to Subscribe to Our eNewsletter.