prefab segmenty

Radan Tomek, MSc. et MSc. Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29 Praha 6 – Dejvice, Czech Republic

Prefabrication of any structure component off-site during highway construction (or reconstruction) offers major time and user cost savings in comparison with the traditional cast-in-place methods of construction. Precast prestressed road pavements’ technology offers dramatic increase in durability, while substantially decreasing construction time and cost. Precasting bridge parts and elements offsite is also very beneficial as bridges are generally among the most expensive objects constructed. It also brings substantial safety advantages, lowers disruption to traffic and increases overall convenience for the road users.

But this technologically, economically and environmentally advantageous approach also has its opponents – prevailingly from the contractors’ side due to the inability to create every project unique and so with higher possible mark-up. The objective of this paper is to analyze and appraise the advantages and benefits of the innovative prefabrication approach in contrast to traditional cast-in-place construction method, and to come up with a set of conclusions and recommendations for the general practice The current aging highway infrastructure in Europe in general is being used by increasing volumes of road traffic. For example, the volume of traffic on the most important Czech highway D1 has almost doubled between the years 2010 and 2016. Even though increase in traffic volumes on the rest of European highways is not that high, it is steadily becoming a reality in every country across the world.

Alternative means of transport

Changing the way the public uses personal means of transport is a very complex issue. So far, it has been partly successful for long distance travel as a result of high capital investment in fast train railroads. Lowering the number of passenger cars on highways for the short and mid haul has not been achieved either. Regarding heavy transport, efforts to relieve the overloaded highway network by shifting its volumes to the railroad has mostly failed so far. This is mainly due to the demand on flexibility and speed of supply required by the manufacturing and the retail industry, and due to the various complications that transport companies face while switching from road to track and back.

Growing need of road maintenance

The European highway network is aging faster than expected. The unexpected high usage and consequent wear of the road infrastructure requires big volumes of repair and reconstruction. Logically, the need for maintenance grows proportionally to increasing usage of roads. At the same time, maintenance must be performed on a continuous basis while serving a growing traffic flow with minimal disturbance. Road users demand that refurbishment and new construction are done faster and with limited road closures, traffic congestion, delays and detours.

Proposed solution

Precast prestressed concrete

Analyzing the current capacities of the construction industry in Europe as of March 2017, it was found that they still have not got 80% of their pre-recession volumes [3] to sufficiently meet the demand for investment and maintenance construction services. Public highway administrations are challenged to find ways to build new and more durable routes and to restore the existing ones quickly and with minimal impact on users.

Precast concrete road pavement and bridge construction systems - cast off-site (at a plant nearby or at site) and installed rapidly off the rush hours, not only lower disruptions to the traffic and enhance safety during construction, they also bring unmatched durability to the new roads and bridges (for both substructure and superstructure; tunnels are not addressed in this paper due to their relatively rare occurrence and technical specificity).

Advantages of precasting over cast-in-place

Since its use dating back to the ancient Romans, precast concrete technology has developed considerably - from the composition of the concrete mix (by adding steel to increase tensile strength) to new ways of casting and curing. The main advantages of precast concrete over cast-in-place (placement of pavement or object in-situ) are as follows: Precast pavement panels or bridge elements can be cast and cured in a controlled environment at a precast plant, providing greater control over consistency of the concrete mix, procedures of vibration and proper curing. Precast objects reduce or eliminate curling and air-entrainment problems that are common with conventional concrete paving [4]. Importantly, precast objects are also prestressed during their plant production and post-tensioned during their installation, which is not possible for the cast-in-place.

Prestressing in the plant significantly improves performance (most importantly the tensile strength) by inducing compressive stresses in the panels. This effectively prevents cracking and strengthens them for better onsite manipulation, preventing them from bending and torqueing. This durability cuts maintenance costs over the life of the roadway and user costs through reduced repair cycles.

As proved by the testing project of the Texas Department of Transportation in 2002 [4] and suggested by El-Reedy [5], post-tensioned panels provide the same design life as thicker conventional concrete pavements, using thinner slabs, which means that a 200mm post-tensioned pavement would have the same life as that of a 355mm conventional pavement. Post-tensioning also increases durability by minimizing or even eliminating cracking as it ties the individual panels together, promoting load transfer between the panels. Additionally, post-tensioning not only reduces the required pavement thickness, but also greatly increases durability, lessening or even preventing cracking in the pavement [6]. This increases the life of the pavement with reduced maintenance.

Prefeb Segmenty


Precast concrete pavement systems

In precast concrete pavement construction, adjacent panels are assembled sequentially and tied together onsite through post-tensioning or cast-in-load transfer systems. Precast concrete pavement systems can be used for single-lane replacements, multiple-lane replacement (an additional lane may be needed to accommodate materials and equipment) or full-width road construction [7]. Using the precast concrete parts for the road’s pavement speeds up the construction time two to three times against the traditional cast-in-place, if well organized. Such a pavement can be used by vehicles the very next day after installation as no further curing of the newly laid road surface is necessary.

Accelerated Bridge Construction

Precast technology is applicable for both replacement/rehabilitation of existing bridges and construction of new ones. Accelerated Bridge Construction (ABC) concentrates on the innovative planning, subordinates design to the technology, uses resources and techniques to accelerate bridge construction and maintenance without compromising their safety.

As with the precast pavements, it is mainly about cutting construction time and increasing durability using higher quality factory-made concrete. So, it makes sense to precast most of the bridge elements such as the pile, pier column, pier cap, beam, deck and barrier/railing as well, i.e. all but the column’s footing, which is usually cast-in-place. The construction cost depends on the quantities, which being high, turn the economics in favor of prefabrication, unification and standardization. Regarding user costs, which might easily exceed those of construction if limiting the high traffic areas for a long time, precast is a clear winner.

Case study

In a project by the Virginia Department of Transportation in fall 2009, the objective was to rehabilitate a 40-year-old exit ramp from highway I-66 to U.S. no.50 in Virginia, USA, with precast concrete pavement systems. It was a $5 million project to replace distressed pavement slabs in a high-traffic area outside Washington D.C. Conventional repair with cast-in-place concrete would have required about 100 days with traffic congestion from lane closures, but the precast slab approach allowed closure of one lane at a time for about 35 nights of work and made all lanes available for rush-hour traffic. Every night cycle included removal of the existing concrete, preparation and grading of the roadway sub-base, and preparation and placement of the new pavement slabs [7].

Work zone safety

Reducing time of the work zones in the moving traffic increases safety for the workers. An average of 85% of deaths in work zones were attributed to drivers and passengers in cars according to the U.S Federal Highway Administration [8]. There were approx. 700 fatal accidents in the work zones in the USA in 2014 and above 200 fatal/non-fatal injuries in the UK [9].

User costs

During any road or even lane closure, the general public and particularly, the business sector incur loss of labor hours, lowered comfort, gasoline wastage, and production [10]. So, user costs are not only economic and social, but also of a qualitative and intangible nature [11]. The difference in closure times in precast and cast-in-place construction systems can be as big as days/weeks versus months/years. Unfortunately, many of the European governments’ highway network administrating bodies do not attribute much importance to user costs (inflicted by traffic limitations) due to their relative “invisibility“ compared to the tangible construction costs.


As traffic volumes continue to rise on European highways, users are demanding more comfort and quality. In view of the limited capacities of the construction industry, prefabrication and precasting construction methods seem to offer the right solutions with the following advantages:
  • Faster pace of construction to cut time of traffic flow limitation
  • Higher and stable quality due to better controlled production process in a dedicated facility and benefits of pre- and post-tensioning
  • Long-term durability due to higher quality materials used
  • Less frequent maintenance of critical parts of the highway pavements and bridges
  • Economy of scale due to mass production of all standardized elements (mainly pavement panels and bridge elements).
It is hoped that public demand for quality and comfortable highway travel will make the state highway administrations exploit the potential that the precast prestressed construction method has.

  1. Road freight transport statistics, Statistical Office of the European Union – Eurostat, 2016.
  2. Passenger cars in the EU, Statistical Office of the European Union – Eurostat, 2015.
  3. Construction production (volume) index overview, Statistical Office of the European Union – Eurostat, 03/2017.
  4. D.K. Merritt, B.F. McCullough, N.H. Burns, Texas Tests Precast for Speed and Usability - Public Roads Magazine, Issue No: Vol. 66 No. 1, 07/2002.
  5. M. A. El-Reedy, Advanced materials and techniques for reinforced concrete structures. CRC Press, Taylor & Francis Group, 2009. ISBN 978-1-4200-8891-5
  6. S. Tayabji, D. Ye, N. Buch: Precast Concrete Pavement Technology, The Second Strategic Highway Research Program, 2013. ISBN 978-0-309-12944-2 | DOI 10.17226/22710
  7. Portland Cement Association: Precast Concrete Pavement Systems Save Time, Cut Congestion on Highway Repair. ROADS & BRIDGES magazine, May 2010, Scranton Gillette Communications, 2010.
  8. Facts and Statistics – Work Zone Safety. Work Zone Safety Program, Federal Highway Administration of the U.S. Department of Transportation, 2015.
  9. The Road Worker Safety Forum, industry group cooperating with public highways administrator Highways England,
  10. Traffic Congestion and Reliability: Trends and Advanced Strategies for Congestion Mitigation, Federal Highway Administration of the U.S. Department of Transportation, 2017.
  11. R. Tomek, Improving Effectiveness of Public Spending on Transport Infrastructure, Periodica Polytechnica Architecture, Vol. 2017/1, ISSN: 0324-590X
GAEPL Achieves Record Paving of 100 lane-km in 100 hours
Ghaziabad Aligarh Expressway Private Limited (GAEPL), under the guidance of Cube Highways, has set an example of speedy, safe, and sustainable road construction through research, integration of advanced technology, following best international practices

Read more ...

Indian Companies Delivering Projects Overseas
External affairs minister S. Jaishankar during his visit interacted with the workers and the senior staff, and lauded the role of Indian infra companies, saying that he was “impressed by their enthusiasm”. “Strong economics will complement shared values in taking

Read more ...

NHAI awards 6,003 km of highway projects in FY23
According to Motilal Oswal Financial Services, the infra project awarding activity picked up and gathered pace in Q4 of FY23, with NHAI awarding total projects of 6,003 km in FY23, much below its FY23 target of 6,500 km. The total value of projects awarded

Read more ...

Is the Indian Road Sector Navigating a Smooth Journey?
This report covers the current state of the Indian Road Sector, performance of road projects under Hybrid Annuity Model, financial performance of major road developers, and the outlook for FY24. CareEdge Ratings analysed 235 HAM projects awarded between

Read more ...

Balanced Mix Design for Bituminous Mixes
As more than 90% of the roads in India have bituminous surfacing, a proper bituminous mix design also assumes significance for better performance of the bituminous roads. India is currently witnessing huge investments by the Indian Government towards

Read more ...

Sustainable Road Construction in Hilly Region
Siksha Swaroopa Kar, Principal Scientist, Amit Kumar, Technical Officer, Krishan, Technician, Flexible Pavement Division, CSIR-CRRI, New Delhi, discuss mechanized laying of cold bituminous layer, the mixer and paver that have been fabricated, and the effectiveness

Read more ...

Implementation of Road Maintenance Management System - Benefits & Technologies
The maintenance of road pavements is essential to ensure the safety, reliability, and sustainability of road networks. A road maintenance management system (RMMS) involves effective management of resources to optimize the life cycle of roads, reduce maintenance

Read more ...

Replacement of Steel Reinforcement with  Synthetic Fibre for Concrete Pavement & Floor
Manoj Didwania, Adani Total Gas Ltd, Dharamsinh Desai University (DDU-Nadiad), Cept University, presents a paper on the use of Macro Synthetic Reinforcement Fibre (MSRF) as full or partial replacement of Steel Reinforcement for Concrete Pavement

Read more ...

GTI® Reinforced Soil Slope System
GTI® is involved in developing environmentally friendly construction products and systems, which are critical for achieving infrastructure growth in a sustainable manner. The company’s GTI® Sloping Fascia Unit and the new system GTI® Reinforced Soil Slopes

Read more ...

CRISIL: Debt to rise for road developers amid strong revenue growth
Sizeable equity commitments in under-construction projects and rising working capital requirement will increase the debt burden of road developers, though revenue growth will also be high in the next two fiscals driven by strong awarding and execution

Read more ...

Indian Toll Roads to witness moderation in growth to high single digits in FY2024 after a stellar 17-20% growth in FY2023: ICRA
WPI for December 2022 is significantly lower at 5.0% against WPI of 14.27% in December 2021. ICRA Ratings expects the toll road projects growth to moderate to high single digit in FY2024 after a 17-20% growth witnessed in FY2023 with moderation in the

Read more ...

Road Over Umling-La Pass at 19,024 Feet
Construction of World’s Highest Motorable Road Chismule – Demchok In Eastern Ladakh Using Non-Frost Susceptible Sub-Base. Union Territory of Ladakh is located at approx 11,000 feet above Mean Sea Level (MSL). The area experiences extreme cold

Read more ...

BRO Uses Eco-Friendly Steel Slag For Road Construction
Steel slag, a by-product of steel making, is produced during the separation of the molten steel from impurities in steelmaking furnaces. This process generates slag as a molten liquid melt and is a complex solution of silicates and oxides that solidifies

Read more ...

Potholes to become history breakthrough by Zydex
Vadodara-based Zydex Industries has developed a new technology in road construction that enables roads to resist cracking under heavy traffic loads and cyclic weather variations. The speciality chemicals company has been at the forefront of R&D and implementation

Read more ...

Expected Increase in M&A and Refinancing Activity for HAM Projects in India: ICRA
According to the ratings agency ICRA, there is expected to be an increase in mergers and acquisitions (M&A) and refinancing activity in highway asset management (HAM) projects in the upcoming quarters. Approximately 105 HAM projects, with a total bid project

Read more ...

Prestressed Precast Concrete Pavement (PPCP)TM
PPCP Technology can help build roads of good quality, which are highly durable, can be built quickly, and do not require extensive maintenance. The construction industry is primarily concerned with two issues: construction quality control and the speed

Read more ...

More Efficient Road with iROADS Asset Management
iROADS Asset Management System enables significant optimization of road maintenance costs while ensuring a well-maintained road network and road assets. India has the second largest road network in the world comprising national

Read more ...

Upgradation of PMGSY Road Using Full Depth Reclamation Process in the State of Nagaland
Rapid growth in industrial development and economy in last two decades has demanded upgradation of the existing road network in the country. Though there is a huge road network in the country, it is still inadequate to meet accessibility and mobility requirements

Read more ...

Erosion Control for Green Highway Construction
Namrata Bichewar, Regional Manager - Maharashtra, Gabion Technologies India Pvt Ltd, discusses the company’s contribution in constructing green highways using Bio-Engineering Erosion Control methods and solutions. The government plans to construct 26 green expressways

Read more ...

Stone Matrix Asphalt is enabling durable and maintenance-free roads in India
A Stone Matrix Asphalt (SMA) pavement laid at Parimal Underpass in Ahmedabad Municipal Corporation has completed 7 years. The underpass, which used to get submerged under almost 2m depth of water due to waterlogging in the monsoons every year

Read more ...