Longer and Longer Concrete Viaducts for Transportation Growing Needs

Serge Montens, Chief of Bridge Division, Systra Paris, France

Transportation needs are increasing very much in developing countries. Both urban and inter-cities transportation infrastructures are being developed very fast for highways and railways. Light rail transit systems are often carried by viaducts, which are more economical than tunnels.

As a consequence, the number and the length of new long bridges are increasing more than ever. In order to build these long structures in a reasonable amount of time, new construction methods have to be imagined. Many long viaduct decks are made from precast segments, 3 to 4m long, assembled using self- moving steel beam. For very long viaducts, this method requires giant precasting yards, as for Dubai metro. This construction method allows assembling a typical 30m span in 2 to 3 days. But this method, although faster than cast-in-place construction, is not sufficiently fast to build very long viaducts in a reasonable amount of time.

The logical solution is to increase the size of the segments, in order to decrease their number, and then the assembling time. We will show some examples of precast full spans, used for highway or railway long viaducts. In that case, pre-tensioning is more interesting than post-tensioning.

Introduction

Transportation needs are increasing very much in developing countries. The urban population represents now more than 50% of the world population, and is still increasing at a high rate.

So, both urban and inter-cities transportation infrastructures are developing very fast for highways and railways. Many populated areas are located near coasts. This means that many islands have to be linked to the continent, and bays or wide estuaries have to be crossed. This implies long bridges.

Longer and Longer Concrete Viaducts for Transportation Growing Needs

In towns, light rail transit systems are often carried by viaducts, which are more economical than tunnels.

As a consequence, the number and the length of new long bridges are increasing more than ever. The following table shows the characteristics of some of them.

In order to build these long viaducts in a reasonable amount of time, new construction methods have to be imagined.

This section of the article is only available for our subscribers. Please click here to subscribe to a subscription plan to view this part of the article.

Synergising Aatmanirbhar Bharat and Operational Preparedness: Launch of Indigenous Modular Bridge in Sikkim
Enhanced operational preparedness along the borders and the need to be self-reliant are two major aspects that have seen a substantial impetus over the last few years. The Border Roads Organisation (BRO) has been a key contributor to the infrastructure

Read more ...

Architectural System for Arch Bridges
Dextra India’s architectural systems mainly include Tension Rods and Compression Struts, which creates functionally effective and aesthetically pleasing structures. Featuring a wide range of sizes and accessories in various steel grades and in both

Read more ...

Load Testing of Various Types of Bridge Superstructures
Er. Vivek Abhyankar describes the steps and aspects of load testing of various types of superstructures, along with some cautionary measures and points to ponder upon by the designers, site engineers, and testing agencies. The information provided will be

Read more ...

Innovative Steel Plate Girders With Corrugated Webs
Girders with corrugated steel webs represent a new innovative system which has emerged in the past decade. These girders have thinner webs, higher fatigue resistance, and are more economical, easier to fabricate, more aesthetic, and provide faster construction

Read more ...

My Tryst with the National Namaste Signature Bridge
The iconic National Namaste Signature Bridge in Delhi over the river Yamuna appears languid in perpetual motion in the tradition of the Calatrava’s Bridges in motion, symbolizing nationalism in its visual form. V N Heggade, FNAE, Structural Consultant, Mumbai

Read more ...

Construction of Foundation & Sub-Structure of Bogibeel Rail-Cum Road Bridge Over River Brahmaputra- An Engineering Marvel
The former Prime Minister of India Shri H D Devagowda laid the foundation stone of the Bogibeel Bridge on January 22, 1997 at Kulajan (Assam). After 5 years of laying of the foundation, on April 22, 2002 the Prime Minister of India Shri Atal Behari Vajpayee

Read more ...

Construction of World’s Tallest Rail Bridge in India
As part of Northeast Policy, the Ministry of Railways took up the project of providing rail connectivity to Imphal in Manipur state. As per the detailed survey, the rail alignment takes off from existing Jiribam

Read more ...

Construction of New Brahmaputra Bridge & Road Works Near Tezpur - An Insight...
Brahmaputra is one of the longest river in Asia with a total length of 2880 km & out of which 920km (approx.) lie in India. The New Brahmaputra Bridge @ Tezpur is one of the most challenging one, in the attempt to bridge

Read more ...

Slope erosion protection of bridge approach embankment
The road and railway crossing across the Brahmaputra on National Highway-52B is located at Bogibeel, about 17km downstream of Dibrugarh in Assam. The location is an area of high intensity rainfall (the annual rainfall ranges

Read more ...

Art & Science of Bridge Engineering - A World Scenario
The world has progressed beyond imaginations. Similar to the field of IT, Civil Engineering has also taken several steps forward to bring out innovative technologies to meet challenges of this world’s aspirations. Going forward from

Read more ...

Dhola Sadiya - India's Longest River Bridge
The bridge lies in the state of Assam, but this location is usually referred to as upper Assam as it is far away from Guwahati and bordering China. The nearest airport is Dibrugarh. Then there is a drive of 65km into the

Read more ...

Innovation in Bridges Components and Materials
The Infrastructure Industry is continuously evolving; new roads, elevated corridors, expressways, railways, dedicated corridors, metros, mono-rails are being constructed all the time. They also require constant

Read more ...

World's Most Amazing Bridges
The 6.5 feet wide walkway in the Hongyagu Scenic Area in Hebei province hangs 755 feet above the ground, and is the world's longest bridge, which opened in 2017-end. Designed by Tel Aviv architect Haim Dotan

Read more ...

An Experimental Study to Estimate Loss of Prestress and Determining Fundamental Natural Frequecny of Prestressed Concrete Bridge
Prestressed Concrete (PSC) structures especially bridges are being largely used all over the world due to their multifarious advantages in terms of structural behaviour, economy as well as aesthetical

Read more ...

Four Span Pipe Bridge
Distressed structures require necessary remedial measures in order to restore their original structural properties like strength and stiffness. Validating the effectiveness of the proposed qualitative remedial

Read more ...

Foot Bridges
Footbridges have a longer history than road or railway bridges. Ancient footbridges comprised of natural materials such as roots of trees, ropes, stones, masonry, and wood. Modern footbridges are built

Read more ...

Thane Creek Bridge
Load testing is done to determine the safe load carrying capacity of structures, determining if specific legal or overweight vehicles can safely cross the structure or needs to be restricted and the level of post

Read more ...

Bridge in Central Kerala
Cement concrete is a versatile building material and is the second most consumed material in the world, after water. It is made using porland cement, coarse, and fine aggregates, water and one or more

Read more ...

Concrete Road Bridges
Planning, design and construction of bridges and flyovers is very challenging at places with space constraints. There has been rapid development with the availability of high strength steel and concrete

Read more ...

Integral Abutment Bridges
The conventional bridges use expansion joints and bearings to accommodate the thermal movements of the bridge. However, they don't completely eliminate the distress caused because

Read more ...